Advertisement

Inorganic Materials

, Volume 53, Issue 1, pp 115–124 | Cite as

Properties of iron-containing nanohydroxyapatite-based composites

  • D. A. Pankratov
  • V. D. Dolzhenko
  • E. A. Ovchenkov
  • M. M. Anuchina
  • A. V. Severin
Article

Abstract

The paramagnetic properties of compounds resulting from the synthesis of nanohydroxyapatite in the presence of Fe(III) ions have been studied by electron paramagnetic resonance, Mössbauer spectroscopy, and magnetochemistry. Based on the obtained results on the mechanism of the reaction between an orthophosphoric acid solution and an aqueous calcium hydroxide suspension, we have found conditions for incorporating Fe(III) impurity ions into hydroxyapatite. We have studied samples differing in the sequence in which reagents were mixed and in hydroxyapatite crystallite formation conditions. It has been shown that, in all instances, the composition and properties of the iron-containing phases in the composites depend significantly on both synthesis and heat treatment conditions.

Keywords

paramagnetism nanohydroxyapatite nanophase electron paramagnetic resonance Mössbauer spectroscopy magnetic susceptibility 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gupta, A.K. and Gupta, M., Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications, Biomaterials, 2005, vol. 26, pp. 3995–4021.CrossRefGoogle Scholar
  2. 2.
    Salata, O.V., Applications of nanoparticles in biology and medicine, J. Nanobiotechnol., 2004, vol. 2, no. 3, pp. 1–6.Google Scholar
  3. 3.
    Albanese, A., Tang, P.S., and Chan, W.S., The effect of nanoparticle size, shape, and surface chemistry on biological systems, Annu. Rev. Biomed. Eng., 2012, vol. 14, pp. 1–16.CrossRefGoogle Scholar
  4. 4.
    Kuzmann, E., Garg, V.K., Oliveira, A.C., et al., Mössbauer study of the effect of pH on Fe valence in ironpolygalacturonate as a medicine for human anaemia, Radiat. Phys. Chem., 2015, vol. 107, pp. 195–198.CrossRefGoogle Scholar
  5. 5.
    Kaushik, A., Jayant, R.D., Sagar, V., and Nair, M., The potential of magneto-electric nanocarriers for drug delivery, Expert. Opin. Drug. Delivery, 2014, vol. 11, no. 10, pp. 1635–1646.CrossRefGoogle Scholar
  6. 6.
    Dash, N.A., Ghosal, P.M., Mahipal, Y.K., et al., The use of magnetite nanoparticles in applied medicine, J. Mech. Eng. Res. Devel., 2014, vol. 37, pp. 15–18.Google Scholar
  7. 7.
    Veiseh, O., Gunn, J.W., and Zhang, M., Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging, Adv. Drug. Deliv. Rev., 2010, vol. 63, pp. 284–304.CrossRefGoogle Scholar
  8. 8.
    Chomouckaa, J., Drbohlavovaa, J., Huskab, D., et al., Magnetic nanoparticles and targeted drug delivering, Pharmacol. Res., 2010, vol. 62, pp. 144–149.CrossRefGoogle Scholar
  9. 9.
    Mahmoudi, M., Sant, S., Wang, B., et al., Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy, Adv. Drug. Deliv. Rev., 2011, vol. 63, pp. 24–46.CrossRefGoogle Scholar
  10. 10.
    Hergt, R., Dutz, S., Muller, R., and Zeisberger, M., Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy, J. Phys. Condens. Matter, 2006, vol. 18, no. 38, pp. 2919–2934.CrossRefGoogle Scholar
  11. 11.
    Hergt, R., Dutz, S., and Roder, M., Effects of size distribution on hysteresis losses of magnetic nanoparticles for hyperthermia, J. Phys. Condens. Matter, 2008, vol. 20, no. 38, pp. 385214–385226.CrossRefGoogle Scholar
  12. 12.
    Laurent, S., Dutz, S., Häfeli, U.O., and Mahmoudi, M., Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles, Adv. Colloid Interface Sci., 2011, vol. 166, pp. 8–23.CrossRefGoogle Scholar
  13. 13.
    Cuny, L., Pia, M., Gisela, H., et al., Magnetic resonance imaging reveals detailed spatial and temporal distribution of iron-based nanoparticles transported through water-saturated porous media, J. Contam. Hydrol., 2015, vol. 182, pp. 51–62.CrossRefGoogle Scholar
  14. 14.
    Szpak, A., Kania, G., Skórka, T., et al., Stable aqueous dispersion of superparamagnetic iron oxide nanoparticles protected by charged chitosan derivatives, J. Nanopart. Res., 2013, vol. 15, pp. 1372–1383.CrossRefGoogle Scholar
  15. 15.
    Polikarpov, D., Cherepanov, V., Chuev, M., et al., Mossbauer evidence of 57Fe3O4 based ferrofluid biodegradation in the brain, Hyperfine Interact., 2014, vol. 226, pp. 421–430.CrossRefGoogle Scholar
  16. 16.
    Li, W.J., Zhou, X.L., Liu, B.L., et al., The effect of nanoparticle on vitrification of porcine GV-stage oocytes, Chin. J. Biomed. Eng., 2013, vol. 32, no. 5, pp. 601–605.Google Scholar
  17. 17.
    Shimizu, T., Akahane, M., Ueha, T., et al., Osteogenesis of cryopreserved osteogenic matrix cell sheets, Cryobiology, 2013, vol. 66, no. 3, pp. 326–332.CrossRefGoogle Scholar
  18. 18.
    Xing, Z., Zhang, J., Kong, L., et al., Combination of cryopreserved hydroxyapatite/bone marrow mesenchymal stem cells repairs rabbit radial defects, Chin. J. Tiss. Eng. Res., 2013, vol. 17, no. 25, pp. 4629–4636.Google Scholar
  19. 19.
    Fuller, B.J., Cryoprotectants: the essential antifreezes to protect life in the frozen state, CryoLetters, 2004, vol. 25, no. 6, pp. 375–388.Google Scholar
  20. 20.
    Laurent, S., Forge, D., Port, M., et al., Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications, Chem. Rev., 2008, vol. 108, no. 6, pp. 2064–2110.Google Scholar
  21. 21.
    Nel, A.E., Mädler, L., Velegol, D., et al., Understanding biophysicochemical interactions at the nano–bio interface, Nat. Mater., 2009, vol. 8, pp. 543–557.CrossRefGoogle Scholar
  22. 22.
    Jarupoom, P. and Jaita, P., Influence of barium hexaferrite on magnetic properties of hydroxyapatite ceramics, J. Nanosci. Nanotechnol., 2015, vol. 15, pp. 9217–9221.CrossRefGoogle Scholar
  23. 23.
    Pankaew, P. and Klumdoung, P., Structural and magnetic characterizations of nano sized grain zinc ferrite/hydroxyapatite ceramic prepared by solid state reaction route, J. Nanosci. Nanotechnol., 2015, vol. 15, pp. 9281–9286.CrossRefGoogle Scholar
  24. 24.
    Webster, T.J., Massa-Schlueter, E.A., Smith, J.L., and Slamovich, E.B., Osteoblast response to hydroxyapatite doped with divalent and trivalent cations, Biomaterials, 2004, vol. 25, pp. 2111–2121.CrossRefGoogle Scholar
  25. 25.
    Hou, C.H., Hou, S.M., Hsueh, Y.S., et al., The in vivo performance of biomagnetic hydroxyapatite nanoparticles in cancer hyperthermia therapy, Biomaterials, 2009, vol. 30, pp. 3956–3960.CrossRefGoogle Scholar
  26. 26.
    Dorozhkin, S.V. and Epple, M., Biological and medical significance of calcium phosphates, Angew. Chem., Int. Ed. Engl., 2002, vol. 41, no. 17, pp. 3130–3146.CrossRefGoogle Scholar
  27. 27.
    Vallet-Regí, M., Evolution of bioceramics within the field of biomaterials, C. R. Chim., 2010, vol. 13, nos. 1–2, pp. 174–185.CrossRefGoogle Scholar
  28. 28.
    Dorozhkin, S.V., Bioceramics of calcium orthophosphates, Biomaterials, 2010, vol. 31, pp. 1465–1485.CrossRefGoogle Scholar
  29. 29.
    Severin, A.V. and Pankratov, D.A., Synthesis of nanohydroxyapatite in the presence of iron(III) ions, Russ. J. Inorg. Chem., 2016, vol. 61, no. 3, pp. 265–272.CrossRefGoogle Scholar
  30. 30.
    Melikhov, I.V., Komarov, V.F., Severin, A.V., et al., Two-dimensional crystalline hydroxyapatite, Dokl. Phys. Chem., 2000, vol. 373, no. 3, pp. 355–358.Google Scholar
  31. 31.
    Liao, C.J., Lin, F.H., Chen, K.S., and Sun, J.S., Thermal decomposition and reconstitution of hydroxyapatite in air atmosphere, Biomaterials, 1999, vol. 20, pp. 1807–1813.CrossRefGoogle Scholar
  32. 32.
    Komozin, P.N., Pankratov, D.A., and Kiselev, Yu.M., EPR spectra of solutions of platinum superoxo hydroxo complexes, Russ. J. Inorg. Chem., 1999, vol. 44, no. 12, pp. 1945–1951.Google Scholar
  33. 33.
    Jiang, M., Terra, J., Rossi, A.M., et al., Fe2+/Fe3+ substitution in hydroxyapatite: theory and experiment, Phys. Rev. B: Condens. Matter Mater. Phys., 2002, vol. 66, pp. 22410710–22410715.Google Scholar
  34. 34.
    Koksharov, Yu.A., Gubin, S.P., Kosobudsky, I.D., et al., Electron paramagnetic resonance spectra near the spin-glass transition in iron oxide nanoparticles, Phys. Rev. B: Condens. Matter Mater. Phys., 2001, vol. 63, pp. 124071–124074.Google Scholar
  35. 35.
    Carbone, C., Benedetto, F.Di., Marescotti, P., et al., Natural Fe-oxide and oxyhydroxide nanoparticles: an EPR and SQUID investigation, Mineral. Petrol., 2005, vol. 85, pp. 19–32.CrossRefGoogle Scholar
  36. 36.
    Koksharov, Yu.A., Dolzhenko, V.D., and Agazade, S.A., Electron magnetic resonance of synthetic goethite in the range of the magnetic transition, Phys. Solid State, 2010, vol. 52, no. 9, pp. 1929–1934.CrossRefGoogle Scholar
  37. 37.
    Koksharov, Yu.A., Pankratov, D.A., Gubin, S.P., et al., Electron paramagnetic resonance of ferrite nanoparticles, J. Appl. Phys., 2001, vol. 89, no. 4, pp. 2293–2298.CrossRefGoogle Scholar
  38. 38.
    Singh, R.K., Kothiyal, G.P., and Srinivasan, A., Electron spin resonance and magnetic studies on CaO–SiO2–P2O5–Na2O–Fe2O3 glasses, J. Non-Cryst. Solids, 2008, vol. 354, pp. 3166–3170.CrossRefGoogle Scholar
  39. 39.
    Pankratov, D.A., Mössbauer study of oxo derivatives of iron in the Fe2O3–Na2O2 system, Inorg. Mater., 2014, vol. 50, no. 1, pp. 82–89.CrossRefGoogle Scholar
  40. 40.
    Sorkina, T.A., Polyakov, A.Yu., Kulikova, N.A., et al., Nature-inspired soluble iron-rich humic compounds: new look at the structure and properties, J. Soils Sediments, 2014, vol. 14, no. 2, pp. 261–268.CrossRefGoogle Scholar
  41. 41.
    Dyar, M.D., Jawin, E.R., Breves, E., et al., Mössbauer parameters of iron in phosphate minerals: implications for interpretation of martian data, Am. Mineral., 2014, vol. 99, nos. 5–6, pp. 914–942.CrossRefGoogle Scholar
  42. 42.
    Mingzhi, J., Xianhao, C., Weiming, X., et al., Mossbauer study of ferric phosphate catalysts, Hyperfine Interact., 1988, vol. 41, pp. 645–648.CrossRefGoogle Scholar
  43. 43.
    Polyakov, A.Yu., Goldt, A.E., Sorkina, T.A., et al., Constrained growth of anisotropic magnetic d-FeOOH nanoparticles in the presence of humic substances, CrystEngComm, 2012, vol. 14, no. 23, pp. 8097–8102.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • D. A. Pankratov
    • 1
  • V. D. Dolzhenko
    • 1
  • E. A. Ovchenkov
    • 1
  • M. M. Anuchina
    • 1
  • A. V. Severin
    • 1
  1. 1.Moscow State UniversityMoscowRussia

Personalised recommendations