Advertisement

Inorganic Materials

, Volume 51, Issue 9, pp 951–957 | Cite as

Studying structure and determining permeability of materials based on X-Ray microtomography data (using porous ceramics as an example)

  • K. M. Gerke
  • D. V. Korost
  • R. V. Vasilyev
  • M. V. Karsanina
  • V. P. Tarasovskii
Article

Abstract

Modern noninvasive methods for probing the three-dimensional structure of materials, such as X-ray tomography, make it possible not only to obtain precise data on the structure of a sample but also to use them for assessing effective properties of the material by numerical methods. We have studied the pore structure of three samples of permeable porous ceramics by X-ray microtomography and numerically determined the permeability by solving the Stokes equation in the three-dimensional geometry of the pore structure. The data thus obtained are in excellent agreement with results of laboratory measurements. Morphological analysis of the pore structure (pore size distribution) allowed us to explain the results obtained for three samples of ceramics produced from granules of various sizes and shapes.

Keywords

Ceramic Sample Effective Property Pervaporation Porous Ceramic Cerium Dioxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ohji, T. and Fukushima, M., Macro-porous ceramics: processing and properties, Int. Mater. Rev., 2012, vol. 57, no. 2, pp. 115–131.CrossRefGoogle Scholar
  2. 2.
    Seculic, J., ten Elsho, J.E., and Blank, D.H.A., Selective pervaporation of water through a nonselective microporous titania membrane by a dynamically induce molecular sieving mechanism, Langmuir, 2005, vol. 21, no. 2, pp. 508–510.CrossRefGoogle Scholar
  3. 3.
    Latella, B.A., Henkel, L., and Mehrteus, E.A., Permeability and high temperature strength of porous mullite–alumina ceramics for hot gas filtration, J. Mater. Sci., 2006, vol. 41, no. 2, pp. 423–430.CrossRefGoogle Scholar
  4. 4.
    Staroverov, Yu.S. and Chernov, Yu.A., Application of ceramic foam filters in foundry and steelmaking, Ogneupory, 1992, no. 2, pp. 38–41.Google Scholar
  5. 5.
    Antonova, A.A., Zhilina, O.V., Kagramanov, G.G., and Nazarov, V.V., Catalytic active membranes on cerium dioxide basis, 6th Int. Conf. on Inorganic Membranes, Montpellier, 2000.Google Scholar
  6. 6.
    Polyakov, S.A. and Vel’mozhin, S.A., Ceramic diaphragm for electrolytic processes, Steklo Keram., 1989, no. 11, pp. 23–24.Google Scholar
  7. 7.
    Barinov, S.M. and Komlev, V.S., Biokeramika na osnove fosfatov kal’tsiya (Calcium Phosphate-Based Bioceramics), Moscow: Nauka, 2005.Google Scholar
  8. 8.
    Torquato, S., Random Heterogeneous Materials: Microstructure and Macroscopic Properties, New-York: Springer, 2002.CrossRefGoogle Scholar
  9. 9.
    Petrasch, J., Meier, F., Friess, H., and Steinfeld, A., Tomography based determination of permeability, Dupuit–Forchheimer coefficient, and interfacial heat transfer coefficient in reticulate porous ceramics, Int. J. Heat Fluid Flow, 2008, vol. 29, pp. 315–326.CrossRefGoogle Scholar
  10. 10.
    Blunt, M.J., Bijeljic, B., Dong, H., Gharbi, O., Iglauer, S., Mostaghimi, P., Paluszny, A., and Pentland, C., Porescale imaging and modeling, Adv. Water Resour., 2013, vol. 51, pp. 197–216.CrossRefGoogle Scholar
  11. 11.
    Yeong, C.L.Y. and Torquato, S., Reconstructing random media. II. Three dimensional media from two dimensional cuts, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 1998, vol. 58, pp. 224–233.CrossRefGoogle Scholar
  12. 12.
    Gerke, K.M., Karsanina, M.V., and Skvortsova, E.B., Description and reconstruction of the soil pore space using correlation functions, Eurasian Soil Sci., 2012, vol. 45, no. 9, pp. 861–872.CrossRefGoogle Scholar
  13. 13.
    Gerke, K.M., Karsanina, M.V., Vasilyev, R.V., and Mallants, D., Improving pattern reconstruction using directional correlation functions, Europhys. Lett., 2014, vol. 106, p. 66002.CrossRefGoogle Scholar
  14. 14.
    Salvo, L., Suery, M., Marmottant, A., Limodin, N., and Bernard, D., 3D imaging in material science: application of X-ray tomography, C. R. Phys., 2010, vol. 11, pp. 641–649.CrossRefGoogle Scholar
  15. 15.
    Joos, J., Carraro, Th., Weber, A., and Ivers-Tiffee, E., Reconstruction of porous electrodes by FIB/SEM for detailed microstructure modeling, J. Power Sources, 2011, vol. 196, pp. 7302–7307.CrossRefGoogle Scholar
  16. 16.
    Korost, D.V., Kalmykov, G.A., Yapaskurt, V.O., and Ivanov, M.K., Application of computed microtomography in studies of the structure of terrigenous collectors, Geol. Nefti Gaza, 2010, pp. 36–42.Google Scholar
  17. 17.
    Silin, D. and Patzek, T., Pore space morphology analysis using maximal inscribed spheres, Phys. A (Amsterdam, Neth.), 2006, vol. 371, pp. 336–360.CrossRefGoogle Scholar
  18. 18.
    Dong, H. and Blunt, M.J., Pore-network extraction from micro-computerized-tomography images, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 2009, vol. 80, paper 036 307.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • K. M. Gerke
    • 1
    • 2
  • D. V. Korost
    • 3
  • R. V. Vasilyev
    • 3
    • 4
  • M. V. Karsanina
    • 2
    • 4
  • V. P. Tarasovskii
    • 5
  1. 1.CSIRO Land and Water, PB2Glen OsmondAustralia
  2. 2.Institute of Geosphere DynamicsRussian Academy of SciencesMoscowRussia
  3. 3.Geology FacultyLomonosov Moscow State University, Moscow State UniversityMoscowRussia
  4. 4.AIR TechnologyMoscowRussia
  5. 5.ZAO NTC BakorShcherbinka, MoscowRussia

Personalised recommendations