Inorganic Materials

, Volume 51, Issue 7, pp 728–735 | Cite as

Growth of aluminum nitride films by plasma-enhanced atomic layer deposition

  • V. A. TaralaEmail author
  • A. S. Altakhov
  • M. Yu. Shevchenko
  • D. P. Valyukhov
  • S. V. Lisitsyn
  • V. Ya. Martens


Aluminum nitride films have been grown by plasma-enhanced atomic layer deposition under self-limiting growth and CVD-like conditions. The films have been characterized by IR spectroscopy, ellipsometry, and Auger exposure spectroscopy. We have examined the influence of the deposition temperature, the reactor purge time after exposure to trimethylaluminum vapor, and the plasma exposure time on the growth rate and composition of the films. Under the deposition conditions studied, the growth rate ranged from 0.1 to 0.26 nm per cycle and the refractive index of the films was 1.52 to 1.98. We obtained films with an aluminum to nitrogen atomic ratio near unity.


Deposition Temperature Atomic Layer Deposition Film Growth Aluminum Nitride Amorphous Content 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Silveira, E., Freitas, J.A., Schujman, S.B., and Schowalter, L.J., AlN bandgap temperature dependence from its optical properties, J. Cryst. Growth, 2008, vol. 310, pp. 4007–4010.CrossRefGoogle Scholar
  2. 2.
    Junior, A.F. and Shanafield, D.J., Thermal conductivity of polycrystalline aluminum nitride (AlN) ceramics, Ceramica, 2004, vol. 50, no. 315, pp. 247–253.Google Scholar
  3. 3.
    Sowers, A.T., Christman, J.A., Bremser, M.D., Ward, B.L., and Davis, R.F., Thin films of aluminium nitride and aluminum gallium nitride for cold cathode application, Appl. Phys. Lett., 1997, vol. 71, no. 16, pp. 2289–2291.CrossRefGoogle Scholar
  4. 4.
    Nikiforov, D.K., Korzhavyi, A.P., and Nikiforov, K.G., Modeling of charge carrier injection and emission processes in aluminum nitride-based nanostructures, Materialy mezhdunarodnoi nauchno-tekhnicheskoi konferentsii INTERMATIC (Proc. INTERMATIC Int. Sci. Technol. Conf.), 2012, vol. 2, pp. 58–60.Google Scholar
  5. 5.
    Shi, S.C., Chen, C.F., Li, H.Y., Lo, J.T., Lan, Z.H., Chen, K.H., and Chen, L.C., Field emission from quasi-aligned aluminium nitride nanotips, Appl. Phys. Lett., 2005, vol. 87, no. 7, pp. 3109–3112.CrossRefGoogle Scholar
  6. 6.
    Chen, Z., Newman, S., Brown, D., Chung, R., Keller, S., Mishra, U.K., Denbaars, S.P., and Nakamura, S., High quality AlN grown on SiC by metal organic chemical vapor deposition, Appl. Phys. Lett., 2008, no. 93, paper 191906.Google Scholar
  7. 7.
    Bosund, M., Mattila, P., Aierken, A., Hakkarainen, T., Koskenvaara, H., Sopanen, M., Airaksinen, V.M., and Lipsanen, H., GaAs surface passivation by plasmaenhanced atomic-layer-deposited aluminum nitride, Appl. Surf. Sci., 2010, vol. 256, no. 24, pp. 7434–7437.CrossRefGoogle Scholar
  8. 8.
    Chen, C., Chen, D.J., Xie, Z.L., Han, P., Zhang, R., Zheng, Y.D., Li, Z.H., Jiao, G., and Chen, T.S., Effects of an AlN passivation layer on the microstructure and electronic properties of AlGaN/GaN heterostructures, Appl. Phys. A, 2008, vol. 90, no. 3, pp. 447–449.CrossRefGoogle Scholar
  9. 9.
    Sen Huang, Qimeng Jiang, Shu Yang, Zhikai Tang, and Chen, K.J., Mechanism of PEALD-grown AlN passivation for AlGaN/GaN HEMTs: compensation of interface traps by polarization charges, Electron Device Lett., 2013, vol. 34, no. 2, pp. 193–195.CrossRefGoogle Scholar
  10. 10.
    Ivaldi, P., Abergel, J., Arndt, G., Robert, P., Andreucci, P., Blanc, H., Hentz, S., and Defay, E., 50 nm thick AlN resonant micro-cantilever for gas sensing application, Frequency Control Symposium (FCS), 2010, pp. 81–84.Google Scholar
  11. 11.
    Samman, A., Gebremariam, S., Rimai, L., Zhang, X., Hangas, J., and Auner, G.W., Platinum–aluminum nitride–silicon carbide diodes as combustible gas sensors, J. Appl. Phys., 2000, no. 87, pp. 3101–3107.Google Scholar
  12. 12.
    Taniyasu, Y., Kasu, M., and Makimoto, T., An aluminum nitride light-emitting diode with a wavelength of 210 nanometers, Nature, 2006, no. 441, pp. 325–328.Google Scholar
  13. 13.
    Dung-Sheng Tsai, Wei-Cheng Lien, Der-Hsien Lien, Kuan-Ming Chen, Meng-Lin Tsai, Senesky, D.G., Yueh-Chung Yu, Pisano, A.P., and Jr-Hau He, Solarblind photodetectors for harsh electronics, Sci. Rep., 2013, vol. 4, paper 2628.Google Scholar
  14. 14.
    Kakanakova-Georgieva, A., Nilsson, D., and Janzén, E., High-quality AlN layers grown by hot-wall MOCVD at reduced temperatures, J. Cryst. Growth, 2012, vol. 338, no. 1, pp. 52–56.CrossRefGoogle Scholar
  15. 15.
    Bouchkour, Z., Tristant, P., Thune, E., Dublanche-Tixier, C., and Jaoul, C., Aluminum nitride nano-dots prepared by plasma enhanced chemical vapor deposition on Si(111), Surf. Coat. Technol., 2011, no. 205, pp. S586–S591.Google Scholar
  16. 16.
    Pat, S. and Kokkokoglu, M., Characterization of deposited AlN thin films at various nitrogen concentrations by rf reactive sputtering, Optoelectron. Adv. Mater., Rapid Commun., 2010, vol. 4, no. 6, pp. 855–858.Google Scholar
  17. 17.
    Yong-Ju Lee and Sang-Won Kang, Growth of aluminum nitride thin films prepared plasma-enhanced atomic layer deposition, Thin Solid Films, 2004, vol. 446, no. 2, pp. 227–231.CrossRefGoogle Scholar
  18. 18.
    Ozgit, C., Donmez, I., Alevli, M., and Biyikli, N., Self-limiting low-temperature growth of crystalline AlN thin films by plasma-enhanced atomic layer deposition, Thin Solid Films, 2012, no. 520, pp. 2750–2755.Google Scholar
  19. 19.
    Alevli, M., Ozgit, C., Donmez, I., and Biyikli, N., Optical properties of AlN thin films grown by plasma enhanced atomic layer deposition, J. Vac. Sci. Technol., A, 2012, vol. 30, no. 2, paper 021506.CrossRefGoogle Scholar
  20. 20.
    Brown, W., Foote, C., Iverson, B., and Anslyn, E., Organic Chemistry, Belmont: Cengage Learning, 2010, p. 1232.Google Scholar
  21. 21.
    Yate, L., Caicedo, J.C., Hurtado-Macias, A., Espinoza-Beltrán, F.J., Zambrano, G., Muñoz-Saldaña, J., and Prieto, P., Composition and mechanical properties of AlC, AlN and AlCN thin films obtained by r.f. magnetron sputtering, Surf. Coat. Technol., 2009, no. 203, pp. 1904–1907.Google Scholar
  22. 22.
    Manzoli, M., Boccuzzi, F., Chiorino, A., Vindigni, F., Deng, W., and Flytzani-Stephanopoulos, M., Al–CO spectroscopic features and reactivity of CO adsorbed on different Au/CeO2 catalysts, J. Catal., 2007, vol. 245, pp. 308–315.CrossRefGoogle Scholar
  23. 23.
    Perros, A.P., Hakola, H., Sajavaara, T., Huhtio, T., and Lipsanen, H., Influence of plasma chemistry on impurity incorporation in AlN prepared by plasma enhanced atomic layer deposition, J. Phys. D: Appl. Phys., 2013, vol. 46, no. 50, paper 505502.CrossRefGoogle Scholar
  24. 24.
    Zhang, Y. and Binner, J., Hydrolysis process of a surface treated aluminum nitride powder—a FTIR study, J. Mater. Sci. Lett., 2002, no. 21, pp. 803–805.Google Scholar
  25. 25.
    Fathima-Parven, M., Umapathy, S., Dhanalakshmi, V., and Anbarasan, R., Synthesis and characterizations of nano sized Al(OH)3 in the presence of aniline as a dispersing agent, Indian J. Sci., 2013, vol. 3, no. 8, pp. 97–101.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • V. A. Tarala
    • 1
    Email author
  • A. S. Altakhov
    • 1
  • M. Yu. Shevchenko
    • 1
  • D. P. Valyukhov
    • 1
  • S. V. Lisitsyn
    • 1
  • V. Ya. Martens
    • 1
  1. 1.North-Caucasus Federal UniversityStavropolRussia

Personalised recommendations