Inorganic Materials

, Volume 51, Issue 7, pp 673–678 | Cite as

Structure and mechanical properties of Ag–Cu films prepared by vacuum codeposition of Au and Cu

  • S. B. KushchevEmail author
  • M. A. Bosykh
  • S. V. Kannykin
  • A. V. Kostyuchenko
  • S. A. Soldatenko
  • M. S. Antonova


We have studied in detail the structure formation process in Ag–Cu films in the course of vacuum deposition of the metals, followed by thermal annealing, and compared the hardness values of nanocrystalline Ag, Cu, and Ag–Cu films. Under equivalent deposition conditions, the hardness of the Ag–Cu films produced by codeposition of the metals exceeds that of the Ag and Cu films. The high hardness of the mixedphase Ag–Cu films is due to their amorphous–nanocrystalline structure. We have determined the limiting grain size above which plastic deformation follows a dislocation mechanism.


Nanocrystalline Structure Transmission Electron Micro Dislocation Mechanism Indent Depth Alloy Thin Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Murray, J.L., Calculations of stable and metastable equilibrium diagrams of the Ag–Cu and Cd–Zn systems, Metall. Trans. A, 1984, vol. 15, pp. 261–268.CrossRefGoogle Scholar
  2. 2.
    Ievlev, V.M., Shvedov, E.V., Ampilogov, V.P., and Merkulov, G.V., Kinetics of diffusional phase separation in growing films of two-component metallic systems with a limited mutual solid solubility of components, Phys. Met. Metallogr., 2000, vol. 90, no. 2, pp. 159–163.Google Scholar
  3. 3.
    Dirks, A.G., Broek, J.J., and Wierenga, P.E., Mechanical properties of thin alloy films: ultramicrohardness and internal stress, J. Appl. Phys., 1984, vol. 55, pp. 4248–4256.CrossRefGoogle Scholar
  4. 4.
    Chen, H. and Zuo, J-M., Structure and phase separation of Ag–Cu alloy thin films, Acta Mater., 2007, vol. 55, pp. 1617–1628.CrossRefGoogle Scholar
  5. 5.
    Gohil, S., Banerjee, R., Bose, S., and Ayyub, P., Influence of synthesis conditions on the nanostructure of immiscible copper–silver alloy thin films, Scr. Mater., 2008, vol. 58, pp. 842–845.CrossRefGoogle Scholar
  6. 6.
    Bol’shov, L.A. and Veshchunov, M.S., Spinodal decomposition and glass transition in eutectic alloy, Zh. Eksp. Teor. Fiz., 1986, vol. 64, no. 3, pp. 635–639.Google Scholar
  7. 7.
    Misják, A.F., Barna, P.B., and Radnóczi, G., Formation of ordered solid solution during phase separation in Ag–Cu alloy films, Mater. Sci., 2008, vol. 2, pp. 389–390.Google Scholar
  8. 8.
    Fan, Z., Tsakiropoulos, P., and Miodownik, A.P., A generalized law of mixture, J. Mater. Sci., 1994, vol. 29, pp. 141–150.CrossRefGoogle Scholar
  9. 9.
    Reshetnyak, E.N. and Strel’nitskii, V.E., Synthesis of hardening nanostructured coatings, Vopr. At. Nauki Tekh., 2008, no. 2, pp. 119–130.Google Scholar
  10. 10.
    Wojdir, M., Fityk: a general-purpose peak fitting program, J. Appl. Crystallogr., 2010, vol. 43, pp. 1126–1128.CrossRefGoogle Scholar
  11. 11.
    Pecharsky, V.K. and Zavalij, P.Y., Fundamentals of Powder Diffraction and Structural Characterization of Materials, New York: Springer, 2009.Google Scholar
  12. 12.
    Powder Diffraction File, Alphabetical Index Inorganic Compounds, Pennsylvania: JCPDS, 1997.Google Scholar
  13. 13.
    Skripov, V.P. and Skripov, L.V., Spinodal decomposition, Usp. Fiz. Nauk, 1979, vol. 128, no. 2, pp. 193–230.CrossRefGoogle Scholar
  14. 14.
    Labisz, K., Rdzawski, Z., and Pawlyta, M., Microstructure evaluation of long-term aged binary Ag–Cu alloy, Arch. Mater. Sci. Eng., 2011, vol. 49, no. 1, pp. 15–24.Google Scholar
  15. 15.
    Soboyejo, W.O., Mechanical properties of engineering materials, New York: Marcel Dekker, 2002.CrossRefGoogle Scholar
  16. 16.
    Volinsky, A.A., Vella, J., Adhihetty, I.S., Sarihan, V., Mercado, L., Yeung, B.H., and Gerberich, W.W., Microstructure and mechanical properties of electroplated Cu thin films, Mater. Res. Soc., 2001, vol. 649, pp. 5.3.1–5.3.6.Google Scholar
  17. 17.
    Cao, Y., Allameh, S., Nankivil, D., Sethiaraj, S., Otiti, T., and Soboyjo, W., Nanoindentation measurements of the mechanical properties of polycrystalline Au and Ag thin films on silicon substrates: effects of grain size and film thickness, Mater. Sci. Eng., A, 2006, vol. 427, pp. 232–240.CrossRefGoogle Scholar
  18. 18.
    Andrievskii, R.A. and Glezer, A.M., Strength of nanostructures, Usp. Fiz. Nauk, 2009, vol. 179, pp. 337–358.CrossRefGoogle Scholar
  19. 19.
    Firstov, S.A., Gorban’, V.F., and Pechkovskii, E.P., New methodological possibilities of evaluating the mechanical properties of advanced materials by automatic indentation, Nauka Innov., 2010, vol. 6, no. 5, pp. 7–18.Google Scholar
  20. 20.
    Ren, F., Zhao, S., Li, W., Tian, B., Yin, L., and Volinsky, A.A., Theoretical explanation of Ag/Cu and Cu/Ni nanoscale multilayers softening, Mater. Lett., 2011, vol. 65, no. 1, pp. 119–121.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • S. B. Kushchev
    • 1
    Email author
  • M. A. Bosykh
    • 1
  • S. V. Kannykin
    • 2
  • A. V. Kostyuchenko
    • 1
  • S. A. Soldatenko
    • 1
  • M. S. Antonova
    • 1
  1. 1.Voronezh State Technical UniversityVoronezhRussia
  2. 2.Voronezh State UniversityVoronezhRussia

Personalised recommendations