Inorganic Materials

, Volume 51, Issue 3, pp 225–229 | Cite as

Thermally stable, electrically conductive diamond material prepared by high-pressure, high-temperature processing of a graphite + boron carbide mixture

  • E. A. Ekimov
  • V. P. Sirotinkin
  • T. B. Shatalova
  • S. G. Lyapin
Article

Abstract

An electrically conductive boron-doped diamond material with high thermal stability and good mechanical properties has been synthesized at high pressures from powder mixtures of graphite and boron carbide. Specific microstructure and high elastic moduli of samples obtained indicate the formation of polycrystalline diamond matrix in the material. The unique combination of physicochemical properties offered by heavily boron-doped diamond can extend its application area as an electrostructural material capable of operating in aggressive media.

Keywords

Boron Boron Carbide Diamond Film Supercon Ducting Thermo Gravimetry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ekimov, E.A., Sidorov, V.A., Bauer, E.D., et al., Superconductivity in diamond, Nature, 2004, vol. 428, pp. 542–545.CrossRefGoogle Scholar
  2. 2.
    Zhang, G., Turner, S., Ekimov, E.A., et al., Global and local superconductivity in boron-doped granular diamond, Adv. Mater., 2014, vol. 26, pp. 2034–2040.CrossRefGoogle Scholar
  3. 3.
    Pleskov, Yu.V., Electrochemistry of diamond: a review, Russ. J. Electrochem., 2002, vol. 38, no. 12, pp. 1275–1291.CrossRefGoogle Scholar
  4. 4.
    Shatskiy, A., Yamazaki, D., Morard, G., et al., Borondoped diamond heater and its application to large-volume, high-pressure, and high-temperature experiments, Rev. Sci. Instrum., 2009, vol. 80, paper 02 390.Google Scholar
  5. 5.
    Mandal, S., Bautze, T., Williams, O.A., et al., The diamond superconducting quantum interference device, ACS Nano, 2011, vol. 5, pp. 7144–7148.CrossRefGoogle Scholar
  6. 6.
    Ekimov, E.A., Sidorov, V.A., Rakhmanina, A.V., et al., High-pressure synthesis and characterization of superconducting boron-doped diamond, Sci. Technol. Adv. Mater., 2006, vol. 7, pp. S2–S6.CrossRefGoogle Scholar
  7. 7.
    Ekimov, E.A., Sadykov, R.A., Gierlotka, S., et al., A high-pressure cell for high-temperature experiments in a toroid-type chamber, Instrum. Exp. Tech., 2004, vol. 47, pp. 276–278.CrossRefGoogle Scholar
  8. 8.
    Ekimov, E.A., Borovikov, N.F., Ivanov, A.S., et al., Application of the dusty plasma method for preparation of diamond ceramics, Diamond Relat. Mater., 2014, vol. 41, pp. 1–5.CrossRefGoogle Scholar
  9. 9.
    Ekimov, E.A., Sidorov, V.A., Zoteev, A., et al., Structure and superconductivity of isotope-enriched borondoped diamond, Sci. Technol. Adv. Mater., 2008, vol. 9, Article Number 044210.Google Scholar
  10. 10.
    Hayami, W. and Otani, S., The role of surface energy in the growth of boron crystals, J. Phys. Chem. C, 2007, vol. 111, pp. 688–692.CrossRefGoogle Scholar
  11. 11.
    Ekimov, E.A., Lebed’, Yu.B., Lyapin, S.G., and Borovikov, N.F., Synthesis of boron-carbon phases with the α-tetragonal boron structure at 8–9 GPa, Inorg. Mater., 2013, vol. 49, no. 3, pp. 247–251.CrossRefGoogle Scholar
  12. 12.
    Brazhkin, V.V., Ekimov, E.A., Lyapin, A.G., et al., Lattice parameters and thermal expansion of superconducting boron-doped diamonds, Phys. Rev. B, 2006, vol. 74, Article Number 140 502.Google Scholar
  13. 13.
    Tallant, D.R., Aselage, T.L., Campbell, A.N., and Emin, D., Boron carbide structure by Raman spectroscopy, Phys. Rev. B, 1989, vol. 40, pp. 5649–5656.CrossRefGoogle Scholar
  14. 14.
    Grimvall, G., The Thermophysical Properties of Materials, Amsterdam: North-Holland, 1986, p. 40.Google Scholar
  15. 15.
    Field, J.E., The Properties of Natural and Synthetic Diamond, London: Academic, 1992, p. 679.Google Scholar
  16. 16.
    Ekimov, E.A., Suetin, N.V., Popovich, A.F., et al., Effect of microstructure and grain size on the thermal conductivity of high-pressure-sintered diamond composites, Inorg. Mater., 2008, vol. 44, no. 3, pp. 224–229.CrossRefGoogle Scholar
  17. 17.
    Werheit, H. and Kuhlmann, U., Superconductivity in boron carbide? Clarification by low-temperature MIR/FIR spectra, J. Phys.: Condens. Matter, 2011, vol. 23. Article Number 435501.Google Scholar
  18. 18.
    Ekimov, E.A., Lebed, J.B., Sidorov, S.A., and Lyapin, S.G., High-pressure synthesis of crystalline boron phases in B-H system, Phys. Status Solidi B, 2013, vol. 250, pp. 721–725.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • E. A. Ekimov
    • 1
  • V. P. Sirotinkin
    • 2
  • T. B. Shatalova
    • 3
  • S. G. Lyapin
    • 1
  1. 1.Vereshchagin Institute of High-Pressure PhysicsRussian Academy of SciencesTroitsk, Moscow oblastRussia
  2. 2.Baikov Institute of Metallurgy and Materials ScienceRussian Academy of SciencesMoscowRussia
  3. 3.Moscow State UniversityMoscowRussia

Personalised recommendations