Inorganic Materials

, Volume 51, Issue 2, pp 158–162 | Cite as

Defect structure of xSc2O3 · (1 − x)TiO2 (x = 0.4–0.5) solid solutions

  • L. P. Lyashenko
  • L. G. Shcherbakova
  • E. S. Kulik
  • R. D. Svetogorov
  • Ya. V. Zubavichus
Article

Abstract

X-ray diffraction characterization with monochromatic synchrotron X-rays has demonstrated that xSc2O3 · (1 − x)TiO2 (x = 0.4–0.5) solid solutions consist of a fluorite-like (Fm3m) disordered phase and a nanoscale (≃ 10–50 nm) pyrochlore-like (Fd3m) ordered phase of the same composition, coherent with the disordered phase. We have determined their lattice parameters. The formation of nanodomains with different degrees of order is shown to be caused by the internal strain due to the high density of structural defects in their unit cells. The materials obtained in this study possess enhanced sorption capacity and can be used as catalysts, catalyst supports, gas sensors, etc.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lyashenko, L.P., Shcherbakova, L.G., and Glushkova, V.B., Interdiffusion in the TiO2-Sc2O3 system, Dokl. Akad. Nauk SSSR, 1977, vol. 233, no. 4, pp. 623–626.Google Scholar
  2. 2.
    Lyashenko, L.P., Shcherbakova, L.G., and Tatarintsev, V.M., High-temperature phase relations in the Sc2O3-TiO2 system, Dokl. Akad. Nauk SSSR, 1977, vol. 232, no. 1, pp. 73–74.Google Scholar
  3. 3.
    Manelis, G.B., Shcherbakova, L.G., Lyashenko, L.P., et al., Diffusion/kinetic control in solid-state reactions between Sc2O3 and TiO2, Dokl. Akad. Nauk SSSR, 1981, vol. 259, no. 5, pp. 1135–1139.Google Scholar
  4. 4.
    Kachapina, L.M., Lyashenko, L.P., Kichigina, G.A., et al., Raman scattering study of structural transitions in the TiO2-Sc2O3 system, Dokl. Akad. Nauk SSSR, 1979, vol. 244, no. 6, pp. 1402–1406.Google Scholar
  5. 5.
    Lyashenko, L.P., Nikonov, Yu.P., Raevskii, A.V., and Shcherbakova, L.G., Formation mechanisms of fluorite-like phases in the TiO2-R2O3 (R = Y, Er, Sc) systems, Materialovedenie, 1999, no. 1, pp. 29–33.Google Scholar
  6. 6.
    Lyashenko, L.P., Kolbanev, I.V., Shcherbakova, L.G., et al., Effect of a nonequilibrium state on phase relations in the system TiO2-Sc2O3 (40–50 mol % Sc2O3), Inorg. Mater., 2004, vol. 40, no. 8, pp. 833–839.CrossRefGoogle Scholar
  7. 7.
    Lyashenko, L.P., Shcherbakova, L.G., Belov, D.A., and Knotko, A.V., Electrical conductivity of nanostructured fluorite-like Sc4Ti3O12, Inorg. Mater., 2009, vol. 45, no. 5, pp. 543–549.CrossRefGoogle Scholar
  8. 8.
    Bulatov, A.V., Izakovich, E.I., Khidekel’, M.L., et al., USSR Inventor’s Certificate no. 1 241 674, 1986.Google Scholar
  9. 9.
    Lyashenko, L.P., Shcherbakova, L.G., Belov, D.A., et al., Synthesis and electrical properties of Gd2MO5 (M = Zr, Hf), Inorg. Mater., 2010, vol. 46, no. 12, pp. 1341–1347.CrossRefGoogle Scholar
  10. 10.
    Lyashenko, L.P., Shcherbakova, L.G., Belov, D.A., et al., Structural and electrical properties of nanostructured fluorite-like R2 + xTiO5 + 1.5x (R = Y, Er; 0 ≤ x ≤ 1), Inorg. Mater., 2013, vol. 49, no. 1, pp. 70–75.CrossRefGoogle Scholar
  11. 11.
    Lyashenko, L.P., Shcherbakova, L.G., Kulik, E.S., et al., Synchrotron X-ray diffraction study of nanostructured Er2O3-TiO2 (50–60 mol % Er2O3) solid solutions, Inorg. Mater., 2013, vol. 49, no. 12, pp. 1213–1219.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • L. P. Lyashenko
    • 1
  • L. G. Shcherbakova
    • 2
  • E. S. Kulik
    • 3
  • R. D. Svetogorov
    • 3
  • Ya. V. Zubavichus
    • 3
  1. 1.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChernogolovka, Moscow oblastRussia
  2. 2.Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia
  3. 3.National Research Centre Kurchatov InstituteMoscowRussia

Personalised recommendations