Inorganic Materials

, Volume 50, Issue 11, pp 1140–1145 | Cite as

Chemical precipitation of iron(III) molybdate + molybdenum trioxide mixtures through continuous crystallization

  • M. V. Nikolenko
  • A. O. Kostynyuk
  • F. Goutenoire
  • Yu. V. Kalashnikov
Article

Abstract

The feasibility of preparing iron(III) molybdate + molybdenum trioxide precipitates with the lowest possible iron oxide content has been studied theoretically and experimentally. The precipitates obtained were characterized by IR spectroscopy, thermal analysis, X-ray diffraction, and X-ray fluorescence analysis. The results demonstrate that precipitation through continuous crystallization at a constant acidity of the mother liquor (pH ≤ 1) allows one to obtain precipitates containing down to 2% Fe2O3.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    House, M., Carley, A., Echeverria-Valda, R., and Bowker, M., Effect of varying the cation ratio within iron molybdate catalysts for the selective oxidation of methanol, J. Phys. Chem. C, 2008, vol. 112, no. 11, pp. 4333–4341.CrossRefGoogle Scholar
  2. 2.
    Routray, K., Zhou, W., Kiely, C.J., et al., Origin of the synergistic interaction between MoO3 and iron molyb-date for the selective oxidation of methanol to formaldehyde, J. Catal., 2010, vol. 275, no. 1, pp. 84–98.CrossRefGoogle Scholar
  3. 3.
    Nikolenko, N.V., Kostynyuk, A.O., Kalashnikov, Yu.V., and Cheremis, E.A., The calculation of the thermodynamic equilibrium in the system Fe3+/MoO42−/H+(OH)/H2O and determination of the reasonable conditions for the deposition of iron molybdate, Russ. J. Appl. Chem., 2012, vol. 85, no. 12, pp. 1824–1819.CrossRefGoogle Scholar
  4. 4.
    Pop, M.S., Geteropolii izopolioksometallaty (Heteropoly and Isopoly Oxometallates), Novosibirsk: Nauka, 1990.Google Scholar
  5. 5.
    Vasserman, I.M., Khimicheskoe osazhdenie iz rastvorov (Chemical Precipitation from Solutions), Leningrad: Khimiya, 1980.Google Scholar
  6. 6.
    Spojakina, A., Kraleva, E., Jiratova, K., and Petrov, L., TiO2-supported iron-molybdenum hydrodesulfurization catalysts, Appl. Catal., A, 2005, vol. 288, nos. 1–2, pp. 10–17.CrossRefGoogle Scholar
  7. 7.
    Manelis, G.B., Nazin, G.M., Rubtsov, Yu.I., and Strunin, V.A., Termicheskoe razlozhenie i gorenie vzryvchatykh veshchestv i porokhov (Thermal Decomposition of Explosives and Gunpowders), Moscow: Nauka, 1996.Google Scholar
  8. 8.
    Shaheen, W.M., Thermal behaviour of pure and binary Fe(NO3)3 · 9H2O and (NH4)6Mo7O24 · 4H2O systems, Mater. Sci. Eng., A, 2006, vols. 445–446, pp. 113–121.Google Scholar
  9. 9.
    Huang, Y., Cong, L., Yu, J., et al., The surface evolution of a catalyst jointly influenced by thermal spreading and solid-state reaction: a case study with an Fe2O3-MoO3 system, J. Mol. Catal. A: Chem., 2009, vol. 302, nos. 1–2, pp. 48–53.CrossRefGoogle Scholar
  10. 10.
    Xu, F., Hu, Y., Dong, L., Chen, Y., et al., Surface interactions of MoO3/α-Fe2O3 system, Chin. Sci. Bull., 2000, vol. 45, no. 3, pp. 214–219.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • M. V. Nikolenko
    • 1
  • A. O. Kostynyuk
    • 1
  • F. Goutenoire
    • 2
  • Yu. V. Kalashnikov
    • 1
  1. 1.Ukrainian State University of Chemical TechnologyDnipropetrovskUkraine
  2. 2.Laboratoire des Oxydes et Fluorures, UMR-CNRS 6010Université du MaineLe Mans Cedex 9France

Personalised recommendations