Inorganic Materials

, Volume 50, Issue 12, pp 1185–1190 | Cite as

Effect of crucible rotation rate on the growth and macrostructure of multicrystalline silicon

  • A. I. Nepomnyshchikh
  • R. V. Presnyakov
  • P. V. Antonov
  • V. S. Berdnikov


This paper examines the influence of uniform rotation of the crucible-melt-crystal system in a flat-bottom Bridgman geometry on the columnar silicon structure formed by a flat solidification front. We analyze the key features of heat exchange via natural convection using numerical simulation of experimental conditions of the growth of multicrystalline silicon from high-purity metallurgical-grade silicon.


Natural Convection Solidification Front Constitutional Supercooling Multicrystalline Silicon Minority Carrier Diffusion Length 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gribov, B.G. and Zinov’ev, K.V., Preparation of high-purity silicon for solar cells, Inorg. Mater., 2003, vol. 39, no. 7, pp. 653–662.CrossRefGoogle Scholar
  2. 2.
    Konovalova, E.V., Koneva, N.A., Perevalova, O.B., and Kozlov, E.V., Structure of the grain-boundary ensemble in single-phase fcc polycrystals, Fiz. Mezomekh., 2000, vol. 3, no. 3, pp. 15–22.Google Scholar
  3. 3.
    Wang, H.Y., Usami, N., Fujiwara, K., Kutsukake, K., and Nakajima, K., Microstructures of Si multicrystals and their impact on minority carrier diffusion length, Acta Mater., 2009, vol. 57, no. 11, pp. 3268–3276.CrossRefGoogle Scholar
  4. 4.
    Nepomnyashchikh, A.I., Eremin, V.P., Krasin, B.A., Vasil’eva, I.E., Eliseev, I.A., Zolotaiko, A.V., Popov, S.I., and Sinitskii, V.V., Multicrystalline silicon for solar power conversion, Izv. Vyssh. Uchebn. Zaved., Mater. Elektron. Tekh., 2002, vol. 4, no. 2, pp. 16–24.Google Scholar
  5. 5.
    Mullins, W.W. and Sekerka, R.F., Stability of a planar interface during solidification of a dilute binary alloy, J. Appl. Phys., 1964, vol. 35, no. 2, pp. 444–451.CrossRefGoogle Scholar
  6. 6.
    Nepomnyashchikh, A.I., Presnyakov, R.V., Eliseev, I.A., and Sokol’nikova, Yu.V., Specific features of multicrystalline silicon growth from high-purity commercial silicon, Tech. Phys. Lett., 2011, vol. 37, no. 8, pp. 739–742.CrossRefGoogle Scholar
  7. 7.
    Antonov, P.V. and Berdnikov, V.S., Effect of heat exchange conditions on the shape of the solidification front and silicon growth rate in the Bridgman-Stockbarger process, Prikl. Mekh. Tekh. Fiz., 2012, vol. 53, no. 6, pp. 65–77.Google Scholar
  8. 8.
    Fujiwara, K., Obinata, Y., Ujihara, T., Usami, N., Sazaki, G., and Nakajima, K., Grain growth behaviors of polycrystalline silicon during melt growth processes, J. Cryst. Growth, 2004, vol. 266, no. 4, pp. 441–448.CrossRefGoogle Scholar
  9. 9.
    Fujiwara, K., Maeda, K., Usami, N., Sazaki, G., Nose, Y., and Nakajima, K., Formation mechanism of parallel twins related to Si-facetted dendrite growth, Scr. Mater., 2007, vol. 57, no. 2, pp. 81–84.CrossRefGoogle Scholar
  10. 10.
    Miyahara, H., Nara, S., Okugawa, M., and Ogi, K., Effect of twin growth on unidirectional solidification control of multicrystal silicon for solar cells, Mater. Trans., 2005, vol. 46, no. 5, pp. 935–943.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • A. I. Nepomnyshchikh
    • 1
  • R. V. Presnyakov
    • 1
  • P. V. Antonov
    • 2
  • V. S. Berdnikov
    • 2
  1. 1.Vinogradov Institute of Geochemistry, Siberian BranchRussian Academy of SciencesIrkutskRussia
  2. 2.Kutateladze Institute of Thermal Physics, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations