Advertisement

Inorganic Materials

, Volume 50, Issue 11, pp 1093–1098 | Cite as

Copper(II) alkyl- and benzylnitrosohy-droxylaminates as precursors for the synthesis of copper(i) oxide micro- and nanoparticles of various morphologies

  • O. V. Kovalchukova
  • Ali Sheikh Bostanabad
  • N. N. Lobanov
  • T. A. Rudakova
  • P. V. Strashnov
  • Yu. A. Skarzhevskii
  • I. N. Zyuzin
Article
  • 65 Downloads

Abstract

We describe the thermal decomposition of a number of copper(II) alkyl- and benzylnitrosohy-droxylaminates via thermostating in polyethylene glycol and 2-dodecyl-1H-imidazole for various lengths of time. This process is shown to lead to the formation of copper(I) oxide nanoparticles, which have been characterized by X-ray diffraction and electron spectroscopy. The starting copper(II) nitrosohydroxylaminates have been characterized by thermogravimetry.

Keywords

Oxide Nanoparticles Copper Nanoparticles Cuprous Oxide Metal Oxide Nanoparticles Chemical Loop Combustion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gusev, A.I., Nanomaterialy, nanostruktury, nanotekhnologii (Nanomaterials, Nanostructures, and Nanotechnologies), Moscow: Fizmatlit, 2005.Google Scholar
  2. 2.
    Gong, Y., Zhou, M.F., and Andrews, L., Spectroscopic and theoretical studies of transition metal oxides and dioxygen complexes, Chem. Rev., 2009, vol. 109, pp. 6765–6808.CrossRefGoogle Scholar
  3. 3.
    Li, X.Q., Zhou, L.P., Gao, J., et al., Synthesis of Mn3O4 nanoparticles and their catalytic applications in hydrocarbon oxidation, Power Technol., 2009, vol. 190, pp. 324–326.CrossRefGoogle Scholar
  4. 4.
    Huang, Z.B., Zhu, Y., Wang, S.T., and Yin, G.F., Controlled growth of aligned arrays of Cu-ferrite nanorods, Cryst. Growth Des., 2006, vol. 6, pp. 1931–1935.CrossRefGoogle Scholar
  5. 5.
    Manna, S., Deb, A.K., Jagannath, J., and De, S.K., Synthesis and room temperature ferromagnetism in Fe doped NiO nanorods, J. Phys. Chem., 2008, vol. 112, pp. 10 659–10 662.CrossRefGoogle Scholar
  6. 6.
    Lou, X.W., Deng, D., Lee, J.Y., Feng, J., and Archer, L.A., Self-supported formation of needlelike Co3O4 nanotubes and their application as lithium-ion battery electrodes, Adv. Mater., 2008, vol. 20, pp. 258–262.CrossRefGoogle Scholar
  7. 7.
    Siriwardane, R., Tian, H.J., Richards, G., Simonyi, T., and Poston, J., Chemical-looping combustion of coal with metal oxide oxygen carriers, Energy Fuels, 2009, vol. 23, pp. 3885–3892.CrossRefGoogle Scholar
  8. 8.
    Rackauskas, S., Nasibulin, A.G., Jiang, H., Tian, Y., et al., A novel method for metal oxide nanowire synthesis, Nanotechnology, 2009, vol. 20, paper 165 603.Google Scholar
  9. 9.
    Yu, Q.J., Ma, X.H., Lan, Z., Wang, M.Z., and Yu, C.J., Structure transition of CuOx nanoparticles in copper silica nanocomposites, J. Phys. Chem., 2009, vol. 113, pp. 6969–6975.Google Scholar
  10. 10.
    Zhao, Y., Zhao, J., Li, Y., Ma, D., Hou, Sh., et al., Room temperature synthesis of 2D CuO nanoleaves in aqueous solution, Nanotechnology, 2011, vol. 22, paper 115 604.Google Scholar
  11. 11.
    Stoimenov, P.K., Metal oxide nanoparticles as bactericidal agents, Langmuir, 2002, vol. 18, pp. 6679–6686.CrossRefGoogle Scholar
  12. 12.
    Ren, G., Hu, D., Cheng, E., Vargas-Reus, M.A., Reip, P., and Allaker, R.P., Characterisation of copper oxide nanoparticles for antimicrobial applications, Int. J. Antimicrobial Agents, 2009, vol. 33, pp. 587–590.CrossRefGoogle Scholar
  13. 13.
    Cioffi, N., Torsi, L., Ditaranto, N., Tantillo, G., Ghibelli, L., and Sabbatini, L., Copper nanoparticle polymer composites with antifungal and bacteriostatic properties, Chem. Mater., 2005, vol. 17, pp. 5255–5262.CrossRefGoogle Scholar
  14. 14.
    Rupareli, J.P., Chatterjee, A.K., Duttagupta, S.P., and Mukherji, S., Strain specificity in antimicrobial activity of silver and copper nanoparticles, Acta Biomater., 2008, vol. 4, pp. 707–771.CrossRefGoogle Scholar
  15. 15.
    Yuhas, B.D. and Yang, P., Nanowire-based all-oxide solar cells, J. Am. Chem. Soc., 2009, vol. 131, pp. 3756–3761.CrossRefGoogle Scholar
  16. 16.
    Briskman, R.N., A study of electrodeposited cuprous oxide photovoltaic cells, Solar Energy Mater. Solar Cells, 1992, vol. 27, pp. 361–368.CrossRefGoogle Scholar
  17. 17.
    Liu, R., Kulp, E.A., Oba, F., Bohannan, E.W., Ernst, F., and Switzer, J.A., Epitaxial electrodeposition of highaspect-ratio Cu2O(110) nanostructures on InP(111), Chem. Mater., 2005, vol. 17, pp. 725–729.CrossRefGoogle Scholar
  18. 18.
    Ghosh, M. and Rao, C.N., Solvothermal synthesis of CdO and CuO nanocrystals, Chem. Phys. Lett., 2004, vol. 393, pp. 493–497.CrossRefGoogle Scholar
  19. 19.
    Thimmaiah, S., Rajamathi, M., Singh, N., et al., A solvothermal route to capped nanoparticles of Γ-Fe2O3 and CoFe2O4, J. Mater. Chem., 2001, vol. 11, pp. 3215–3221.CrossRefGoogle Scholar
  20. 20.
    Gautama, U.K., Ghosh, M., and Rao, C.N., A strategy for the synthesis of nanocrystal films of metal chalcogenides and oxides by employing the liquid-liquid interface, Chem. Phys. Lett., 2003, vol. 381, pp. 1–6.CrossRefGoogle Scholar
  21. 21.
    Kol’cheva, N.V and Petrukhin, O.M., Electronic structure and special analytical properties of N-nitroso-N-cyclohexylhydroxylamine and its chelates, Koord. Khim., 1986, vol. 12, no. 4, pp. 449–462.Google Scholar
  22. 22.
    Yu, Y., Du, F.P., Yu, J.C., Zhuang, Y.Y., and Wong, P.K., One-dimensional shape-controlled preparation of porous Cu2O nano-whiskers by using CTAB as a template, J. Solid State Chem., 2004, vol. 177, pp. 4640–4647.CrossRefGoogle Scholar
  23. 23.
    Kovalchukova, O.V., Bostanabad, A.S., Stash, A.I., Strashnova, S.B., and Zyuzin, I.N., Synthesis, spectral and crystallographic studies of coordination compounds of some d and f metals with N-nitroso-N-(methyl)ethylhydroxylamine, Russ. J. Inorg. Chem., 2014, vol. 59, no. 3, pp. 192–195.CrossRefGoogle Scholar
  24. 24.
    Zyuzin, I.N., Nechiporenko, G.N., Golovina, N.I., Trofimova, R.F., and Loginova, M.V., Synthesis and structure of di(NNO-azoxy)formals and some related N-alkyl-N-alkoxydiazene-N-oxides, Izv. Akad. Nauk, Ser. Khim., 1997, no. 8, pp. 1486–1493.Google Scholar
  25. 25.
    Bottei, R.S. and Schneggenburger, R.G., Thermal and spectral study of some divalent metal chelates of cupferron and dicupferron, J. Inorg. Nucl. Chem., 1970, vol. 32, pp. 1525–1545.CrossRefGoogle Scholar
  26. 26.
    PDWin Software Package for X-Ray Diffraction Studies, St. Petersburg: OAO Burevestnik, 2010.Google Scholar
  27. 27.
    ICDD PDF-2, Release 2007.Google Scholar
  28. 28.
    Bai, Y., Yang, T., Gu, Q., and Cheng, G., Shape control mechanism of cuprous oxide nanoparticles in aqueous colloidal solutions, Powder Technol., 2012, vol. 227, pp. 35–42.CrossRefGoogle Scholar
  29. 29.
    He, P., Shen, X., and Gao, H., Size-controlled preparation of Cu2O octahedron nanocrystals and studies on their optical absorption, J. Colloid. Interface Sci., 2005, vol. 284, pp. 510–515.CrossRefGoogle Scholar
  30. 30.
    Rittermeier, A., Miao, Sh., Schroter, M.K., et al., The formation of colloidal copper nanoparticles stabilized by zinc stearate: one-pot single-step synthesis and characterization of the core-shell particles, Phys. Chem. Chem. Phys., 2009, vol. 11, pp. 8358–8366.CrossRefGoogle Scholar
  31. 31.
    Borgohain, K., Murase, N., and Mahamuni, S.J., Synthesis and properties of Cu2O quantum particles, Appl. Phys., 2002, vol. 92, pp. 1292–1297.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • O. V. Kovalchukova
    • 1
  • Ali Sheikh Bostanabad
    • 1
  • N. N. Lobanov
    • 1
  • T. A. Rudakova
    • 2
  • P. V. Strashnov
    • 2
  • Yu. A. Skarzhevskii
    • 1
  • I. N. Zyuzin
    • 3
  1. 1.Peoples’ Friendship University of RussiaMoscowRussia
  2. 2.Enikolopov Institute of Synthetic Polymeric MaterialsRussian Academy of SciencesMoscowRussia
  3. 3.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChernogolovka, Moscow oblastRussia

Personalised recommendations