Inorganic Materials

, Volume 50, Issue 7, pp 733–737 | Cite as

Di- and trivalent ytterbium distributions along a melt-grown CaF2 crystal

  • A. E. Angervaks
  • A. S. Shcheulin
  • A. I. Ryskin
  • E. A. Garibin
  • M. A. Krutov
  • P. E. Gusev
  • A. A. Demidenko
  • S. V. Kuznetsov
  • E. V. Chernova
  • P. P. Fedorov
Article

Abstract

The tri- and divalent ytterbium distributions along the length of a CaF2 crystal with a nominal YbF3 content of 0.1 mol % have been assessed by absorption spectroscopy. Using the Gulliver-Pfann equation, the Yb3+ and Yb2+ distribution coefficients have been determined to be k = 0.977 and 0.925, respectively.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Basiev T.T., Vasil’ev S.V., Doroshenko M.E., Konuyshkin V.A., Kouznetsov S.V., Osiko V.V., Fedorov P.P. Efficient lasing in diode-pumping Yb3+:CaF2-SrF2 solid solution single crystals, Quantum Electronics, 2007, vol. 37, no. 10, pp. 934–937.CrossRefGoogle Scholar
  2. 2.
    Siebold, M., Bock, S., Schramm, U., Xu, B., et al., Yb:CaF2—a new old laser crystal, Appl. Phys. B, 2009, vol. 97, pp. 327–338.CrossRefGoogle Scholar
  3. 3.
    Druon, F., Ricaud, S., Papandopulos, D.N., et al., On Yb:CaF2 and Yb:SrF2: review of spectroscopic and thermal properties and their impact on femtosecond and high power laser performance, Opt. Mater. Express, 2011, vol. 1, no. 3, pp. 489–502.CrossRefGoogle Scholar
  4. 4.
    Machinet, G., Andriukaitis, G., Sevillano, P., et al., High-gain amplification in Yb:CaF2 crystals pumped by a high-brightness Yb-doped 976 nm fiber laser, Appl. Phys. B, 2013, vol. 111, pp. 495–500.CrossRefGoogle Scholar
  5. 5.
    Akchurin, M.Sh., Basiev, T.T., Demidenko, A.A., et al., CaF2:Yb laser ceramics, Opt. Mater., 2013, vol. 35, no. 3, pp. 444–450.CrossRefGoogle Scholar
  6. 6.
    Fedorov, P.P., Fluoride laser ceramics, Handbook on Solid-State Lasers: Materials, Systems and Applications, Denker, B. and Shklovsky, E., Eds., Oxford: Woodhead, 2013, pp. 82–109.CrossRefGoogle Scholar
  7. 7.
    Popov, P.A., Fedorov, P.P., Kuznetsov, S.V., et al., Thermal conductivity of single crystals of Ca1 − xYbxF2 + x solid solutions, Dokl. Phys., 2008, vol. 53, no. 4, pp. 198–200.CrossRefGoogle Scholar
  8. 8.
    Moiseev, N.V., Popov, P.A., Fedorov, P.P., et al., Thermodynamic properties of Ca1 − xErxF2 + x and Ca1 − xYbxF2 + x heterovalent solid solutions, Inorg. Mater., 2013, vol. 49, no. 3, pp. 325–328.CrossRefGoogle Scholar
  9. 9.
    Sidorov, A.A., Popov, P.A., Aksenov, S.V., et al., Thermal expansion of solid solutions based on calcium and barium fluorides, Inorg. Mater., 2013, vol. 49, no. 5, pp. 525–527.CrossRefGoogle Scholar
  10. 10.
    Nicoara, I., Pecingina-Garjoaba, N., and Bunoiu, O., Concentration distribution of Yb2+ and Yb3+ in YbF3:CaF2 crystals, J. Cryst. Growth, 2008, vol. 310, pp. 1476–1481.Google Scholar
  11. 11.
    Kuznetsov, S.V. and Fedorov, P.P., Morphological stability of solid-liquid interface during melt crystallization of solid solutions M1 − xRxF2 + x, Inorg. Mater., 2008, vol. 44, no. 13, pp. 1434–1458.CrossRefGoogle Scholar
  12. 12.
    Shcheulin, A.S., Angervaks, A.E., Semenova, T.S., et al., Additive coloring of CaF2:Yb crystals: determination of Yb2+ concentration in CaF2:Yb crystals and ceramics, Appl. Phys. B: Lasers Opt., 2013, vol. 111, no. 4, pp. 551–557.CrossRefGoogle Scholar
  13. 13.
    Fedorov P.P. and Osiko V.V., Crystal growth of fluorides, Bulk Crystal Growth of Electronic, Optical and Optoelectronic Materials: Wiley Series in Materials for Electronic and Optoelectronic Applications, Capper, P., Ed., New York: Wiley, 2005, pp. 339–356.Google Scholar
  14. 14.
    Chalmers, B., Principles of Solidification, New York: Wiley, 1964.Google Scholar
  15. 15.
    Nassau, K., Application of the Czochralski method to divalent metal fluorides, J. Appl. Phys., 1961, vol. 32, no. 10, pp. 1820–1821.CrossRefGoogle Scholar
  16. 16.
    Delbove, F. and Lallemand-Chatain, S., Determination cryometrique a la limite de dilution infine, des coefficients de distribution entre solution solide et solution ignee fondue, des ions trivalent des terres rares dissons dans les fluorures alcalino-terreux, C. R. Acad. Sci., 1970, vol. 270, pp. 964–966.Google Scholar
  17. 17.
    Karelin, V.V., Kazakevich, M.Z., Red’kin, A.F., et al., Distribution coefficients of rare-earth elements in CaF2 single crystals, Kristallografiya, 1975, vol. 20, no. 4, pp. 758–762.Google Scholar
  18. 18.
    Fedorov, P.P., Turkina, T.M., Lyamina, O.I., et al., Evaluation of impurity distribution coefficients from the liquidus curve of MF2-RF3 binary systems, Vysokochist. Veshchestva, 1990, no. 6, pp. 67–72 (in Russian).Google Scholar
  19. 19.
    Fedorov, P.P., On transitions between eutectic and peritectic phase diagrams of binary systems, Zh. Neorg. Khim., 1986, vol. 31, no. 3, pp. 759–763 (in Russian).Google Scholar
  20. 20.
    Fedorov, P.P., Transformations of T-x phase diagrams of binary systems in the condensed state: II. Phase equilibria under constraints, Russ. J. Phys. Chem. A, 1999, vol. 73, no. 9, pp. 1387–1392.Google Scholar
  21. 21.
    Sobolev, B.P. and Fedorov, P.P., Phase diagrams of the CaF2-(Y,Ln)F3 systems. I. Experimental, J. Less-Common Met., 1978, vol. 60, pp. 33–46.CrossRefGoogle Scholar
  22. 22.
    Fedorov, P.P., Izotova, O.E., Alexandrov, V.B., and Sobolev, B.P., New phases with fluorite-derived structure in CaF2-(Y,Ln)F3 systems, J. Solid State Chem., 1974, vol. 9, no. 4, pp. 368–374.CrossRefGoogle Scholar
  23. 23.
    Su, L., Xu, J., Dong, Y., et al., Characteristics and optical spectra of U:CaF2 crystal grown by TGT, J. Cryst. Growth, 2004, vol. 261, pp. 496–501.Google Scholar
  24. 24.
    Shannon, R.D., Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr., 1976, vol. 32, no. 5, pp. 751–767.CrossRefGoogle Scholar
  25. 25.
    Ivanov, S.P., Buchinskaya, I.I., and Fedorov, P.P., Distribution coefficients of impurities in cadmium fluoride, Inorg. Mater., 2000, vol. 36, no. 4, pp. 392–396.CrossRefGoogle Scholar
  26. 26.
    Fedorov, P.P., Heterovalent isomorphism and solid solutions with a variable number of ions in the unit cell, Russ. J. Inorg. Chem., 2000, vol. 45,suppl. 3, pp. S268–S291.Google Scholar
  27. 27.
    Karelin, V.V., Izuchenie kristallizatsii iz rasplava tverdykh rastvorov ftoridov shchelochnozemel’nykh i redkozemel’nykh elementov. Soobshchenie 2. Raschet koeffitsientov raspredeleniya komponentov binarnykh tverdykh rastvorov v sistemakh tipa MF 2 -MF 2 -RF 2 , MF 2 -RF 3 i RF3gde M i R — shchelochnozemel’nye i redkozemel’nye iony, sootvetstvenno (Crystallization of solid solutions between alkaline-earth and rare-earth fluorides from melts: Communication 2. Calculation of distribution coefficients of the component of binary solid solutions in MF′2 MF2 -RF2, MF2-RF3, and RF′3 (M = alkaline-earth ion, R = rare-earth ion) systems), Available from VINITI, 1984, no. 1872-84 (in Russian).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • A. E. Angervaks
    • 1
  • A. S. Shcheulin
    • 1
  • A. I. Ryskin
    • 1
  • E. A. Garibin
    • 2
  • M. A. Krutov
    • 2
  • P. E. Gusev
    • 2
  • A. A. Demidenko
    • 2
  • S. V. Kuznetsov
    • 3
  • E. V. Chernova
    • 3
  • P. P. Fedorov
    • 3
  1. 1.St. Petersburg National Research University of Information Technologies, Mechanics, and OpticsSt. PetersburgRussia
  2. 2.INCROM Ltd.St. PetersburgRussia
  3. 3.Prokhorov General Physics InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations