Advertisement

Inorganic Materials

, Volume 50, Issue 4, pp 419–422 | Cite as

Effect of annealing on the structure and phase composition of thin electro-optical lithium niobate films

  • D. A. KiselevEmail author
  • R. N. Zhukov
  • A. S. Bykov
  • M. I. Voronova
  • K. D. Shcherbachev
  • M. D. Malinkovich
  • Yu. N. Parkhomenko
Article

Abstract

We have studied the formation of thin textured LiNbO3 films in originally amorphous samples produced by rf magnetron sputtering of a single-crystal target on silicon substrates containing a native oxide layer. The results demonstrate that postgrowth annealing leads to the formation of two phases, LiNbO3 and LiNb3O8, and that the percentage of the nonferroelectric phase LiNb3O8 is minimal after annealing at a temperature of 700°C. Annealing at 700°C is optimal because it ensures the lowest surface roughness of the film, the highest degree of structuring of the ferroelectric phase, and the maximum contrasts corresponding to the vertical and lateral components of the ferroelectric polarization in piezoresponse force microscopy.

Keywords

Lithium Niobate Ferroelectric Phase Native Oxide Layer Piezoresponse Force Microscopy Film Heat 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Volpyan, O.D. and Kuzmichev, A.I., Otritsatel’noe prelomlenie voln. Vedenie v fiziku i tekhnologiyu elektromagnitnykh metamaterialov (Negative Refraction of Waves: Introduction to the Physics and Technology of Electromagnetic Metamaterials), Kiev: Avers, 2012.Google Scholar
  2. 2.
    Feigelson, R.S., Epitaxial growth of lithium niobate thin films by the solid source MOCVD method, J. Cryst. Growth, 1996, vol. 166, p. 1.CrossRefGoogle Scholar
  3. 3.
    Tsukada, I. and Higuchi, S., Pulsed-laser deposition of LiNbO3 in low gas pressure using pure ozone, Jpn. J. Appl. Phys., 2004, vol. 43, no. 8A, p. 5307.CrossRefGoogle Scholar
  4. 4.
    Lee, S.Y. and Feigelson, R.S., Reduced optical losses in MOCVD grown lithium niobate thin films on sapphire by controlling nucleation density, J. Cryst. Growth, 2006, vol. 186, no. 4, p. 594.CrossRefGoogle Scholar
  5. 5.
    Zhukov, R.N., Kiselev, D.A., Malinkovich, M.D., et al., Ferroelectric grain polarization propagation in electrically isolated lithium niobate films, Izv. Vyssh. Uchebn. Zaved., Mater. Elektron. Tekh., 2011, no. 4, p. 12.Google Scholar
  6. 6.
    Lee, T.-H., Hwang, F.-T., Lee, C.-T., et al., Investigation of LiNbO3 thin films grown on Si substrate using magnetron sputter, Mater. Sci. Eng., B, 2007, vol. 136, p. 92.CrossRefGoogle Scholar
  7. 7.
    Volpyan, O.D. and Kuzmichev, A.I., Growth of optical coatings by medium-frequency magnetron sputtering, Prikl. Fiz., 2008, no. 3, p. 34.Google Scholar
  8. 8.
    Akazawa, H. and Shimada, M., Mechanism for LiNb3O8 phase formation during thermal annealing of crystalline and amorphous LiNbO3 thin films, J. Mater. Res., 2007, vol. 22, no. 2, p. 1726.CrossRefGoogle Scholar
  9. 9.
    Kiselev, D.A., Bykov, A.S., Zhukov, R.N., et al., Study of LiNbO3 single crystals with a regular domain structure by piezoresponse force microscopy, Crystallogr. Rep., 2012, vol. 57, p. 781.CrossRefGoogle Scholar
  10. 10.
    Johann, F., Jungk, T., Lisinski, S., et al., Sol-gel derived ferroelectric nanoparticles investigated by piezoresponse force microscopy, Appl. Phys. Lett., 2009, vol. 95, p. 202.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • D. A. Kiselev
    • 1
    Email author
  • R. N. Zhukov
    • 1
  • A. S. Bykov
    • 1
  • M. I. Voronova
    • 1
  • K. D. Shcherbachev
    • 1
  • M. D. Malinkovich
    • 1
  • Yu. N. Parkhomenko
    • 1
  1. 1.Moscow Institute of Steel and Alloys (National University of Science and Technology)MoscowRussia

Personalised recommendations