Inorganic Materials

, Volume 50, Issue 4, pp 379–386 | Cite as

Terbium oxide films grown by chemical vapor deposition from terbium(III) dipivaloylmethanate

  • S. V. BelayaEmail author
  • V. V. Bakovets
  • A. I. Boronin
  • S. V. Koshcheev
  • M. N. Lobzareva
  • I. V. Korolkov
  • P. A. Stabnikov


Terbium oxide films have been grown on Si(111) substrates by decomposition of Tb(dpm)3 vapor in argon flow at Tb(dpm)3 source temperatures of 170 and 190°C and substrate temperatures from 470 to 550°C. The films have been annealed in air at temperatures of 400, 650, and 800°C. X-ray diffraction characterization results show that the films grown by chemical vapor deposition consist of cubic Tb2O3. The films annealed in air at 650 and 800°C are isostructural with Tb4O7, and those annealed at 400°C are isostructural with Tb11O20. According to X-ray photoelectron spectroscopy data, the 9-nm-thick surface layer of the Tb2O3 film has the correct stoichiometry O: Tb = 1.48, whereas the film annealed at 800°C has O: Tb = 1.85. Raman spectroscopy data demonstrate that the concentration of carbon-containing species on the surface of the films decreases with decreasing substrate temperature and can be brought to zero by air annealing at 800°C.


Chemical Vapor Deposition Terbium Raman Spectroscopy Data Terbium Oxide Decrease Substrate Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Vdovin, O.S., Kir’yashkina, Z.I., Kotelkov, V.N., et al., Plenki oksidov redkozemel’nykh elementov v MDM i MDP strukturakh (Rare-Earth Oxide Films in MIM and MIS Structures), Saratov: Universitet, 1983.Google Scholar
  2. 2.
    Moseley, P.T., Materials selection for semiconductor gas sensor, Sens. Actuators, B, 1992, vol. 6, p. 149.CrossRefGoogle Scholar
  3. 3.
    Jones, A.C., Aspinall, H.C., and Chalkes, P.R., Chemical Vapour Deposition: Precursors, Processes and Applications, London: Royal Society of Chemistry, 2009, pp. 357–412.Google Scholar
  4. 4.
    Daly, J.G., Schmidt, J.A., and Gruber, J.B., Selective site excitation of europium-doped monoclinic Gd2O3, Phys. Rev. B: Condens. Matter Mater. Phys., 1983, vol. 27, no. 9, p. 5250.CrossRefGoogle Scholar
  5. 5.
    Kaul’, A.R., Chemical methods for producing films and coatings of high-T c superconductors, Zh. Vses. Khim. o-va. im. D. I. Mendeleeva, 1989, vol. 34, no. 4, p. 492.Google Scholar
  6. 6.
    Bonnet, G., Lachkar, M., Colson, J.C., and Larpin, J.P., Characterization of thin solid films of rare earth oxides formed by the MOCVD technique, for high temperature corrosion applications, Thin Solid Films, 1995, vol. 261, p. 31.CrossRefGoogle Scholar
  7. 7.
    Bakovets, V.V., Levashova, T.M., Ratushnyak, V.T., and Bakhturova, L.F., Chemical Vapor Deposition of Y2O3 Films Using Y(dpm)3, Inorg. Mater., 2002, vol. 38, no. 4, p. 371.CrossRefGoogle Scholar
  8. 8.
    Nigro Lo, R., Raineri, V., Bongiorno, C., et al., Dielectric properties of Pr2O3 high-k films grown by metalorganic chemical vapor deposition on silicon, Appl. Phys. Lett., 2003, vol. 83, no. 1, p. 129.CrossRefGoogle Scholar
  9. 9.
    Progress in the Science and Technology of the Rare Earths, Eyring, L., Ed., Oxford: Pergamon, 1966. Translated under the title Uspekhi v khimii i tekhnologii redkozemel’nykh elementov, Moscow: Metallurgiya, 1970, pp. 180–183.Google Scholar
  10. 10.
    Sievers, R.E., Eisentraut, K.J., and Springer, C.S., Volatile rare earth chelates of β-diketones, Lanthanide/Actinide Chemistry, Gould, R.F., Ed., Washington, DC: Am. Chem. Soc., 1967, pp. 141–154.CrossRefGoogle Scholar
  11. 11.
    Stabnikov, P.A., Zharkova, G.I., Smolentsev, A.I., et al., Structure and properties of terbium(III) dipivaloylmethanate and its adducts with Bipy and Phen, J. Struct. Chem., 2011, vol. 52, no. 3, p. 560.CrossRefGoogle Scholar
  12. 12.
    Powder Diffraction File, Inorganic Phases, International Center for Diffraction Data, 2010.Google Scholar
  13. 13.
    Handbook of X-ray Photoelectron Spectroscopy, Moulder, J.F., Stickle, W.F., Sobol, P.E., et al., Eds., Eden Prairie: PerkinElmer, 1992.Google Scholar
  14. 14.
    Sherwood, P.M.A., Practical Surface Analysis by Auger and X-ray Photoelectron Spectroscopy, Briggs, D. and Seah, M., Eds., New York: Wiley, 1983.Google Scholar
  15. 15.
    Smirnova, T.P., Volodin, V.A., Belyi, V.I., et al., Raman scattering spectroscopy of inclusions of carbon in Al2O3 films and its solid solutions with HfO2, Opt. Spectrosc., 2011, vol. 110, no. 1, p. 48.CrossRefGoogle Scholar
  16. 16.
    Flores-Gonzalez, M.A., Ledoux, G., Roux, S., et al., Preparing nanometer scaled Tb-doped Y2O3 luminescent powders by the polyol method, J. Solid State Chem., 2005, vol. 178, p. 989.CrossRefGoogle Scholar
  17. 17.
    Baenziger, N.C., Eick, H.A., Schuldt, H.S., et al., Terbium oxides. III. X-ray diffraction studies of several stable phases, J. Am. Chem. Soc., 1961, vol. 83, no. 10, p. 2219.CrossRefGoogle Scholar
  18. 18.
    Sugihara, T., Sheng, H.L., and Eyring, L., The kinetics of oxidation of ϕ-phase terbium oxide: 7/2Tb2O3 + δ + (3/4−7/4δ)O2 → Tb7O12, J. Solid State Chem., 1981, vol. 40, p. 189.CrossRefGoogle Scholar
  19. 19.
    Andreeva, A.F. and Gil’man, I.Ya., Poluchenie i svoistva tonkikh plenok (Preparation and Properties of Thin Films), Kiev, 1997, issue 4, pp. 107–111.Google Scholar
  20. 20.
    Naumkin, A.V., Kraut-Vass, A., Gaarenstroom, S.W., and Powell, C.J., NIST X-ray Photoelectron Spectroscopy Database. NIST Standard Reference Database 20, Version 4.1, 2012.Google Scholar
  21. 21.
    Guodong, F., Changgen, F., and Zhao, Z., Surface and texture properties of Tb-doped ceria-zirconia solid solution prepared by sol-gel method, J. Rare Earths, 2007, vol. 25, p. 42.CrossRefGoogle Scholar
  22. 22.
    Dai, H.X., Wong, K.W., et al., SrCl2-promoted REO (RE = Ce, Pr, Tb) catalysts for the selective oxidation of ethane: a study on performance and defect structure—for ethene formation, J. Catal., 2001, vol. 199, no. 2, p. 177.CrossRefGoogle Scholar
  23. 23.
    Sarma, D.D. and Rao, C.N., XPES of oxides of second- and third row transition metals including rare earths, J. Electron Spectrosc. Relat. Phenom., 1980, vol. 20, p. 25.CrossRefGoogle Scholar
  24. 24.
    Zelikman, A.N., Metallurgiya redkozemel’nykh metallov toriya i urana (Metallurgy of the Rare-Earth Metals, Thorium, and Uranium), Moscow: Metallurgiya, 1969.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • S. V. Belaya
    • 1
    Email author
  • V. V. Bakovets
    • 1
  • A. I. Boronin
    • 2
  • S. V. Koshcheev
    • 2
  • M. N. Lobzareva
    • 1
  • I. V. Korolkov
    • 1
  • P. A. Stabnikov
    • 1
  1. 1.Nikolaev Institute of Inorganic ChemistrySiberian Branch of Russian Academy of SciencesNovosibirskRussia
  2. 2.Boreskov Institute of CatalysisSiberian Branch of Russian Academy of SciencesNovosibirskRussia

Personalised recommendations