Advertisement

Inorganic Materials

, Volume 50, Issue 1, pp 82–89 | Cite as

Mössbauer study of oxo derivatives of iron in the Fe2O3-Na2O2 system

  • D. A. PankratovEmail author
Article

Abstract

Various compositions of oxo derivatives of iron reacting with sodium peroxide have been studied by Mössbauer spectroscopy. We have examined several mathematical models of the measured spectra. The results obtained are inconsistent with hypotheses made previously that such conditions may lead to the formation of compounds of iron in oxidation states above (6+). We demonstrate that a large excess of an alkali peroxide leads, most likely, to the formation of at least two iron(V) derivatives in tetrahedral coordination. In their Mössbauer spectra, they have isomer shifts of −0.45 and −0.51 mm/s and unusually large quadrupole splittings: 1.32 and 1.94 mm/s (at room temperature).

Keywords

Iron Atom Isomer Shift Quadrupole Splitting Iron Compound Sodium Ferrate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Riedel, S. and Kaupp, M., The highest oxidation states of the transition metal elements, Coord. Chem. Rev., 2009, vol. 253, p. 606.CrossRefGoogle Scholar
  2. 2.
    Wilke, M., Farges, F., Petit, P.-E., et al., Oxidation state and coordination of Fe in minerals: An Fe K-XANES spectroscopic study, Am. Mineral., 2001, vol. 86, p. 714.Google Scholar
  3. 3.
    Perfiliev, Yu.D., Benko, E.M., Pankratov, D.A., et al., Formation of iron(VI) in ozonolysis of iron(III) in alkaline solution, Inorg. Chim. Acta, 2007, vol. 360, p. 2789.CrossRefGoogle Scholar
  4. 4.
    Jeannot, C., Malaman, B., Gérardin, R., and Oulladiaf, B., Synthesis, crystal and magnetic structures of the sodium ferrate(IV) Na4FeO4 studied by neutron diffraction and Mössbauer techniques, J. Solid State Chem., 2002, vol. 165, no. 2, p. 266.CrossRefGoogle Scholar
  5. 5.
    Dedushenko, S.K., Perfiliev, Yu.D., Tcheboukov, D.E., et al., Moessbauer study of pentavalent iron in vanadium(V) oxide matrix, Mendeleev Commun., 1999, vol. 5, p. 211.CrossRefGoogle Scholar
  6. 6.
    Demazeau, G., Buffat, B., Menil, F., et al., Characterization of six-coordinated iron(V) in oxide lattice, Mater. Res. Bull., 1981, vol. 16, p. 1465.CrossRefGoogle Scholar
  7. 7.
    Gutsev, G.L., Khanna, S.N., Rao, B.K., and Jena, P., FeO4: A unique example of a closed-shell cluster mimicking a superhalogen, Phys. Rev. A, 1999, vol. 59, no. 5, p. 3681.CrossRefGoogle Scholar
  8. 8.
    Goralevich, D.K., Studies of higher group VIII oxygen compounds, Zh. Ros. Fiz.-Khim. O-va, Ser. Khim., 1926, vol. 58, no. 8, p. 1129.Google Scholar
  9. 9.
    Perfil’ev, Yu.D., Kopelev, N.S., Kiselev, Yu.M., and Spitsyn, V.I., Mössbauer study of octavalent iron, Dokl. Akad. Nauk SSSR, 1987, vol. 296, no. 6, p. 1406.Google Scholar
  10. 10.
    Dedushenko, S.K., Perfil’ev, Yu.D., and Kornilova, A.A., RF Patent 2 448 055.Google Scholar
  11. 11.
    Dedushenko, S.K., Perfil’ev, Yu.D., Chuev, M.I., et al., Identification of iron oxidation states in the products of interaction of Na2O2 and Fe2O3 by Mössbauer absorption spectroscopy, Russ. J. Inorg. Chem., 2010, vol. 55, no. 6, p. 942.CrossRefGoogle Scholar
  12. 12.
    Afanas’ev, A.M. and Chuev, M.A., Discrete versions of Mössbauer spectra, Zh. Eksp. Teor. Fiz., 1995, vol. 107, no. 3, p. 989.Google Scholar
  13. 13.
    Cooper, G.D. and DeGraff, B.A., Photochemistry of ferrioxalate system, J. Phys. Chem., 1971, vol. 75, no. 19, p. 2897.CrossRefGoogle Scholar
  14. 14.
    Matsnev, M.E. and Rusakov, V.S., Spectrrelax: An application for Mössbauer spectra modeling and fitting, AIP Conf. Proc., 2012, vol. 1489, p. 178.CrossRefGoogle Scholar
  15. 15.
    Kopelev, N.S., Kiselev, Yu.M., and Perfiliev, Yu.D., Mossbauer spectroscopy of the oxocomplexes iron in higher oxidation states, J. Radioanal. Nucl. Chem., 1992, vol. 157, p. 401.CrossRefGoogle Scholar
  16. 16.
    Menil, F., Systematic trends of the 57Fe Mossbauer isomer shifts in (FeOn) and (FeFn) polyhedra. Evidence of a new correlation between the isomer shift and the inductive effect of the competing bond T-X (→Fe) (where X is o or F and T any element with a formal positive charge), J. Phys. Chem. Solids, 1985, vol. 46, p. 763.CrossRefGoogle Scholar
  17. 17.
    Takeda, Y., Kanno, K., Takada, T., et al., Phase relation in the oxygen nonstoichiometric system, SrFeOx(2.5 ≤ x ≤3.0), J. Solid State Chem., 1986, vol. 63, p. 237CrossRefGoogle Scholar
  18. 18.
    Walker, L.R., Wertheim, G.K., and Jaccarino, V., Interpretation of the Fe57 isomer shift, Phys. Rev. Lett., 1961, vol. 6, no. 3, p. 98.CrossRefGoogle Scholar
  19. 19.
    Neese, F., Prediction and interpretation of the 57Fe isomer shift in Mossbauer spectra by density functional theory, Inorg. Chim. Acta, 2002, vol. 337, p. 181.CrossRefGoogle Scholar
  20. 20.
    Filatov, M., First principles calculation of Mossbauer isomer shift, Coord. Chem. Rev., 2009, vol. 253, p. 594.CrossRefGoogle Scholar
  21. 21.
    Shinjo, T., Ichida, T., and Takada, T., Fe57 Mossbauer effect and magnetic susceptibility of hexavalent iron compounds; K2FeO4, SrFeO4 and BaFeO4, J. Phys. Soc. Jpn., 1970, vol. 29, no. 1, p. 111.CrossRefGoogle Scholar
  22. 22.
    Wallace, T. and Fleck, A., Some properties of fused sodium hydroxide, J. Chem. Soc., 1921, vol. 119, p. 1839.CrossRefGoogle Scholar
  23. 23.
    Gutsev, G.L., Weatherford, C.A., Pradhan, K., et al., Structure and spectroscopic properties of iron oxides with the high content of oxygen: FeOn and (n = 5–12), J. Phys. Chem. A, 2010, vol. 114, no. 34, p. 9014.CrossRefGoogle Scholar
  24. 24.
    Tran, V.T. and Hendrickx, M.F.A., Description of the geometric and electronic structures responsible for the photoelectron spectrum of FeO4, J. Chem. Phys., 2011, vol. 135, paper 094 505.Google Scholar
  25. 25.
    Atanasov, M., Theoretical studies on the higher oxidation states of iron, Inorg. Chem., 1999, vol. 38, p. 4942.CrossRefGoogle Scholar
  26. 26.
    Pankratov, D.A., Komozin, P.N., and Kiselev, Yu.M., EPR spectroscopy of transformations of iridium(III) and iridium(IV) hydroxo complexes in alkaline media, Russ. J. Inorg. Chem., 2011, vol. 56, no. 11, p. 1794.CrossRefGoogle Scholar
  27. 27.
    Pankratov, D.A., Dement’ev, A.I., and Kiselev, Yu.M., Ab initio calculations of hydroxoplatinum compounds: II. Binuclear platinum(IV) superoxo complexes, Russ. J. Inorg. Chem., 2008, vol. 53, no. 2, p. 247.Google Scholar
  28. 28.
    Ippolitov, E.G., Tripol’skaya, T.A., Prikhodchenko, P.V., and Pankratov, D.A., Potassium hexahydroperoxostannate: Synthesis and structure, Russ. J. Inorg. Chem., 2001, vol. 46, no. 6, p. 851.Google Scholar
  29. 29.
    Pankratov, D.A., Prikhodchenko, P.V., Perfil’ev, Yu.D., et al., Mössbauer spectroscopy of alkali hydroperoxostannates, Izv. Ross. Akad. Nauk, Ser. Fiz., 2001, vol. 65, no. 7, p. 1043.Google Scholar
  30. 30.
    Josephson, B.D., Temperature-dependent shift of Γ-rays emitted by a solid, Phys. Rev. Lett., 1960, vol. 4, p. 341.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.Moscow State UniversityMoscowRussia
  2. 2.Moscow State Pedagogical UniversityMoscowRussia

Personalised recommendations