Inorganic Materials

, Volume 50, Issue 1, pp 23–28 | Cite as

Fabrication of flexible transparent conductive coatings based on single-walled carbon nanotubes

  • K. F. Akhmadishina
  • I. I. Bobrinetskii
  • R. A. Ibragimov
  • I. A. Komarov
  • A. M. Malovichko
  • V. K. Nevolin
  • V. A. Petukhov


We have proposed a method for large-scale growth of thin nanotube films from solution on the surface of flexible, transparent substrates. Uniform nanotube deposition was achieved through the preparation of a stable colloidal nanotube solution in an aqueous surfactant solution. We examined the effect of the number of deposition cycles on the morphology of the films and their optical and electrical characteristics. The results demonstrate that the optical transmittance of the films decreases linearly with increasing film thickness, whereas their resistance decreases quadratically, which corresponds to three-dimensional nanotube percolation in the films. With increasing film thickness, the sheet resistance of the films drops from 400 to 15 kΩ/□ and their transmittance decreases from 85 to 40%, respectively.


Surfactant Sheet Resistance Deposition Cycle Bend Angle DMMP 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ferrer-Anglada, N., Pérez-Puigdemont, J., Figueras, J., et al., Flexible, transparent electrodes using carbon nanotubes, Nanoscale Res. Lett., 2012, vol. 7, p. 571.CrossRefGoogle Scholar
  2. 2.
    Scardaci, V., Coull, R., and Coleman, J.N., Very thin transparent, conductive carbon nanotube films on flexible substrates, Appl. Phys. Lett., 2010, vol. 97, no. 2, paper 023 114.Google Scholar
  3. 3.
    Zikang, T. and Sheng, P., Nanoscale phenomena: Basic science to device applications, Ser.: Lecture Notes Nanoscale Sci. Technol., 2008, vol. 2, no. 14, p. 248.Google Scholar
  4. 4.
    Han, J.T., Kim, J.S., Lee, S.G., et al., Chemical strainrelaxation of single-walled carbon nanotubes on plastic substrates for enhanced conductivity, J. Phys. Chem. C, 2011, vol. 115, no. 45, p. 22 251.CrossRefGoogle Scholar
  5. 5.
    Zhang, J., Gao, L., Sun, J., et al., Dispersion of single-walled carbon nanotubes by Nafion in water/ethanol for preparing transparent conducting films, J. Phys. Chem., 2008, vol. 112, p. 16 370.Google Scholar
  6. 6.
    Saran, N., Parikh, K., Suh, D.S., et al., Fabrication and characterization of thin films of single-walled carbon nanotube bundles on flexible plastic substrate, J. Am. Chem. Soc., 2004, vol. 126, no. 14, p. 4462.CrossRefGoogle Scholar
  7. 7.
    Crouzier, T., Nimmagadda, A., Nollert, M.U., and McFetridge, P.S., Modification of single walled carbon nanotube surface chemistry to improve aqueous solubility and enhance cellular interactions, Langmuir, 2008, vol. 24, p. 13 173.CrossRefGoogle Scholar
  8. 8.
    Xiaolin Li, Li Zhang, Xinran Wang, et al., Langmuir-Blodgett assembly of densely aligned single-walled carbon nanotubes from bulk materials, J. Am. Chem. Soc., 2007, vol. 129, no. 16. p. 4890.CrossRefGoogle Scholar
  9. 9.
    Yan, Y.H., Chan-Park, M.B., and Zhang, Q., Advances in carbon-nanotube assembly, Small, 2007, vol. 3, no. 1, p. 24.CrossRefGoogle Scholar
  10. 10.
    Pham, D.T., Subbaraman, H., Chen, M.Y., et al., Selfaligned carbon nanotube thin-film transistors on flexible substrates with novel source-drain contact and multilayer metal interconnection, IEEE Trans. Nanotechnol., 2012, vol. 11, no. 1, p. 44.CrossRefGoogle Scholar
  11. 11.
    Pei, S., Du, J., Zeng, Y., et al., The fabrication of a carbon nanotube transparent conductive film by electrophoretic deposition and hot-pressing transfer, Nanotechnology, 2009, vol. 20, no. 23, p. 5707.CrossRefGoogle Scholar
  12. 12.
    Krestinin, A.V., Kiselev, N.A., Raevskii, A.V., and Ryabenko, A.G., Perspective of single-wall carbon nanotube production in the arc-discharge process, Eurasian Chem. Tech. J., 2003, vol. 5, no. 1, p. 7.Google Scholar
  13. 13.
    Dan, B., Irvin, G.C., and Pasquali, M., Continuous and scalable fabrication of transparent conducting carbon nanotube films, ACS Nano, 2009, vol. 3, no. 4, p. 835.CrossRefGoogle Scholar
  14. 14.
    Bobrinetskii, I.I. and Nevolin, V.K., Micromechanics of carbon nanotubes on substrates, Mikrosist. Tekh., 2002, no. 4, p. 20.Google Scholar
  15. 15.
    Mandal, H.S., Ward. A., and Tang, X., Transferable thin films of pristine carbon nanotubes, J. Nanosci. Nanotechnol., 2011, vol. 11, no. 4, p. 3265.CrossRefGoogle Scholar
  16. 16.
    Hu, L., Hecht, D.S., and Gruner, G., Percolation in transparent and conducting carbon nanotube networks, Nano Lett., 2004, vol. 4, no. 12, p. 2513.CrossRefGoogle Scholar
  17. 17.
    Dressel, M. and Gruner, G., Electrodynamics of Solids: Optical Properties of Electrons in Matter, Cambridge: Cambridge Univ. Press, 2002.CrossRefGoogle Scholar
  18. 18.
    Doherty, E.M., De, S., Lyons, E.P., et al., The spatial uniformity and electromechanical stability of transparent, conductive films of single walled nanotubes, Carbon, 2009, vol. 47, no. 10, p. 2466.CrossRefGoogle Scholar
  19. 19.
    Zhou, Y., Hu, L., and Gruner, G., A method of printing carbon nanotube thin films, Appl. Phys. Lett., 2006, vol. 88, no. 3, paper 123 109.Google Scholar
  20. 20.
    Kim, C., Cakmak, M., and Zhou, X., Effect of composition on orientation, optical and mechanical properties of bi-axially drawn pen and pen/pei blend films, Polymer, 1998, vol. 39, no. 10, p. 4225.CrossRefGoogle Scholar
  21. 21.
    Borodko, Y., Jones, L., Lee, H., et al., Spectroscopic study of tetradecyltrimethylammonium bromide Pt-C14TAB nanoparticles: Structure and stability, Langmuir, 2009, vol. 25, no. 12, p. 6665.CrossRefGoogle Scholar
  22. 22.
    Dresselhaus, M.S., Dresselhaus, G., Saito, R., and Jorio, A., Raman spectroscopy of carbon nanotubes, Phys. Rep., 2004, vol. 409, no. 2, p. 47.CrossRefGoogle Scholar
  23. 23.
    Wang, Y., Yang, Z., Hou, Z., et al., Flexible gas sensors with assembled carbon nanotube thin films for DMMP vapor detection, Sens. Actuators, B, 2010, vol. 150, no. 2, p. 708.CrossRefGoogle Scholar
  24. 24.
    Lipomi, D.J., Vosgueritchian, M., Tee, B.C.-K., et al., Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes, Nat. Nanotechnol., 2011, vol. 6, no. 12, p. 788.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • K. F. Akhmadishina
    • 1
  • I. I. Bobrinetskii
    • 1
  • R. A. Ibragimov
    • 1
  • I. A. Komarov
    • 1
  • A. M. Malovichko
    • 1
  • V. K. Nevolin
    • 1
  • V. A. Petukhov
    • 1
  1. 1.MIET National Research University of Electronic TechnologyZelenograd, MoscowRussia

Personalised recommendations