Inorganic Materials

, Volume 49, Issue 6, pp 564–567 | Cite as

Laser-induced reactions in layers of B4C + Fe and B + C + Fe mixtures on a steel substrate

  • O. I. Lomovsky
  • G. V. Golubkova
  • N. V. Bulina
  • I. Yadroitsev
  • I. Smurov


We have studied laser-induced processes in layers of mixtures of boron carbide and iron or a stoichiometric mixture of boron with carbon (4: 1) and iron on a steel substrate. Laser processing was found to increase the microhardness of the surface owing to the formation of a coating containing iron boride phases: Fe2B and Fe3B. After preliminary mechanical activation of boron carbide and iron mixtures, even the lowest laser power used in the experiments was enough to initiate the formation of iron borides.


Laser Processing Boron Carbide Selective Laser Melting Laser Alloy Selective Laser Melting Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ozkan Ozdemir, Metin Usta, Cuma Bindal, and Hikmet Ucisik, Hard iron boride (Fe2B) on 99.97 wt % pure iron, Vacuum, 2006, vol. 80, pp. 1391–1395.CrossRefGoogle Scholar
  2. 2.
    Wang Xibao, The metallurgical behavior of B4C in the iron-based surfacing alloy during PTA powder surfacing, Appl. Surf. Sci., 2005, vol. 252, pp. 2021–2028.CrossRefGoogle Scholar
  3. 3.
    Turov, Yu.V., Khusid, B.M., Voroshnin, L.G., et al., Sintering-induced structuring of boron carbide-iron powders, Poroshk. Metall, (Kiev), 1991, vol. 6, pp. 25–30.Google Scholar
  4. 4.
    Yadroitsev, I., Bertrand, Ph., and Smurov, I., Parametric analysis of the selective laser melting process, Appl. Surf. Sci., 2007, vol. 253, pp. 8064–8069.CrossRefGoogle Scholar
  5. 5.
    Lomovsky, O.I., Golubkova, G.V., Yadroitsev, I., and Smurov, I., Laser-induced reaction of Si powder with a steel substrate, Inorg. Mater., 2012, vol. 48, no. 3, pp. 263–266.CrossRefGoogle Scholar
  6. 6.
    Duhay, P. and Hanic, P., Metastable Fe4B phase in amorphous Fe-B alloys, Phys. Status Solidi, 1980, vol. 62, pp. 719–726.CrossRefGoogle Scholar
  7. 7.
    Chen, S.L., Liu, W., Geng, D.Y., et al., Decomposition of B4C and magnetic properties of Nd-Fe-(B,C) alloys synthesized by mechanical alloying, J. Alloys. Compd., 2006, vol. 415, pp. 271–275.CrossRefGoogle Scholar
  8. 8.
    Ramosa, A.S., Taguchi, S.P., Ramos, E.C.T., et al., High-energy ball milling of powder B-C mixtures, Mater. Sci. Eng., A, 2006, vol. 422, pp. 184–188.CrossRefGoogle Scholar
  9. 9.
    Grigor’eva, T.F., Barinova, A.P., and Lyakhov, N.Z., Mekhanokhimicheskii sintez v metallicheskikh sistemakh (Mechanochemical Synthesis in Metallic Systems), Novosibirsk: Nauka, 2008, p. 216.Google Scholar
  10. 10.
    Serebryakova, T.I., Neronov, V.A., and Peshev, P.D., Vysokotemperaturnye boridy (High-Temperature Borides), Moscow: Metallurgiya, 1991, p. 217.Google Scholar
  11. 11.
    Herold, U. and Koster, U., Metastabile Phasen in extreme schnell Erstarrten Eisen-Bor-Legirungen, Z. Metallkd., 1978, vol. 69, pp. 326–332.Google Scholar
  12. 12.
    Khan, Y. and Sostarich, M., Temperature X-ray diffraction analysis of the amorphous Fe 80B 20 alloy, Z. Metallkd., 1981, vol. 72, pp. 266–268.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • O. I. Lomovsky
    • 1
  • G. V. Golubkova
    • 1
  • N. V. Bulina
    • 1
  • I. Yadroitsev
    • 2
  • I. Smurov
    • 2
  1. 1.Institute of Solid State Chemistry and Mechanochemistry, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Ecole nationale d’ingénieurs de Saint-Etienne (ENISE)Laboratoire DIPISaint-Etienne Cedex 2France

Personalised recommendations