Inorganic Materials

, Volume 48, Issue 14, pp 1279–1284 | Cite as

Determination of chromium (VI) using cathodic voltammetry technique in gold microelectrodes

  • E. A. Zakharova
  • E. E. Elesova
  • A. A. Skorokhodova
  • G. N. Noskova
Article

Abstract

Electrochemical reduction of chromium (VI) is studied on a gold microelectrode assembly (Au-MEA) using the cathodic voltammetry (VA) technique. The optimum conditions for obtaining the analytical signal of Cr (VI) are chosen. The range of the analyzed concentrations of Cr (VI) are 0.005–0.2 mg/L, and the detection limit is 5 × 10−5 mg/L. Dissolved oxygen, manifold excesses of alkali and alkaline-earth ions, 200-fold excesses of Cr (III), and 10-fold excesses of Fe (III) and Cu (II) do not interfere with determination of 0.005 mg/L Cr (VI). In the presence of anionic surfactants (DDCNa), the signal of Cr (VI) decreases, but the linear dependence on the concentration remains. A rapid technique for determination of Cr (VI) in purified technical water without sample preparation is suggested. The advantage of Au-MEA consists in the simplicity of synthesis, running time, high sensitivity.

Keywords

chromium cathodic voltammetry gold electrode microelectrode assembly 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nekotorye voprosy toksichnosti ionov metallov (Some Issues of Toxisity of Metal Ions), Zigel’, Kh., Zigel’, A., Eds., Moscow: Mir, 1993, p. 368.Google Scholar
  2. 2.
    Lavrukhina, A.K. and Yukina, L.V., Analiticheskaya khimiya khroma (Analytical Chemistry of Chromium), Moscow: Nauka, 1979.Google Scholar
  3. 3.
    Ivanov, V.G. and Salikhdzhanova, R.M., F. Zavod. Lab., 1987, vol. 53, no. 8, pp. 2–8.Google Scholar
  4. 4.
    Bobrovski, A., Krolichka, A., and Zarebski, J., Electroanalysis, 2009, no. 13, pp. 1449–1458.Google Scholar
  5. 5.
    Abu Zuhri, A. and Voelter, W., Fresenius J. Anal. Chem., 1998, vol. 360, pp. 1–9.CrossRefGoogle Scholar
  6. 6.
    Brainina, Kh.Z., Inversionnaya vol’tamperometriya tverdykh faz (Stripping Voltammetry of Solid Phases), Moscow: Khimiya, 1972.Google Scholar
  7. 7.
    Welch, Ch.M., Nekrassova, O., and Compton, R.G., Talanta, 2005, vol. 65, pp. 74–80.Google Scholar
  8. 8.
    Burke, L.D. and Nugent, P.F., Electrochim. Acta, 1997, vol. 42, no. 2, pp. 399–411.CrossRefGoogle Scholar
  9. 9.
    Danilov, F.I. and Protsenko, V.S., Russ. J. Electrochem., 1998, vol. 34, no. 3, p. 276.Google Scholar
  10. 10.
    Budnikov, G.K., Maistrenko, V.N., and Murinov, Yu.I., Vol’tamperometriya s modifitsirovannymi i ul’tramikroelektrodami (Voltammetry on Modified Ultramicroelectrodes), Moscow: Nauka, 1994.Google Scholar
  11. 11.
    Compton, R.G. and Banks, C.E., Understanding Voltammetry. World Sc. Publ., Singapure, 2007.Google Scholar
  12. 12.
    Noskova G.N., Zakharova E.A., Chernov V.I., Zaichko A.V., Elesova E.E., Kabakaev A.S. Anal. Meth., 2011, vol. 3, no. 5, pp. 1130–1135.CrossRefGoogle Scholar
  13. 13.
    Trasatti, S. and Petri, O.A., Pure Appl. Chem., 1991, vol. 63, no. 5, pp. 711–734.CrossRefGoogle Scholar
  14. 14.
    Horanyi, G., J. Solid. State Electrochem., 2000, vol. 4, pp. 153–158.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • E. A. Zakharova
    • 1
  • E. E. Elesova
    • 1
  • A. A. Skorokhodova
    • 1
  • G. N. Noskova
    • 1
  1. 1.Tomsk Polytechnical UniversityTomskRussia

Personalised recommendations