Advertisement

Inorganic Materials

, Volume 48, Issue 6, pp 642–647 | Cite as

Solid-state field-assisted silver diffusion in (TeO2)0.6(WO3)0.25(La2O3)0.05(Na2O)0.1 glass

  • B. S. StepanovEmail author
  • T. Wagner
  • J. Lorincik
  • M. Frumar
  • M. F. Churbanov
  • Yu. I. Chigirinsky
Article

Abstract

Silver-doped layers have been produced in (TeO2)0.6(WO3)0.25(La2O3)0.05(Na2O)0.1 (TWLN) glass by solid-state field-assisted diffusion. The silver concentration profile in the glass has been determined by secondary ion mass spectrometry (SIMS) and Rutherford backscattering spectrometry (RBS). The Matano-Boltzmann method applied to thermally activated diffusion indicates that the silver diffusion coefficient in the glass is a weak function of silver concentration. We carried out modeling of silver concentration profiles in the doped layer of the TWLN glass after solid-state field-assisted diffusion. Good agreement of the theoretical fit and experimental data suggests that the model chosen can be used to describe solid-state field-assisted diffusion of silver ions in TWLN glasses. Using RBS data, we have quantitatively estimated the surface density of silver atoms after field-assisted diffusion. Combining SIMS and RBS, we were able to assess the absolute silver concentration depth profile. Our results demonstrate that field-assisted diffusion, a simple and effective procedure for doping optical glasses, can be used to produce planar waveguide structures based on the tellurite glass studied here.

Keywords

Rutherford Backscattering Spectrometry Tellurite Glass Rutherford Backscattering Spectrometry Spectrum Glass Waveguide Silver Diffusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rolli, R., Chiasera, A., Montagna, M., et al., Rare-Earth Doped Materials and Devices, Proc. SPIE-Int. Soc. Opt. Eng., 2001, p. 109.Google Scholar
  2. 2.
    Findakly, T., Glass Waveguides by Ion Exchange: A Review, Opt. Eng., 1985, vol. 24, pp. 244–250.Google Scholar
  3. 3.
    Sakida, S., Nanba, T., and Miura, Y., Refractive-Index Profiles and Propagation Losses of Er3+-Doped Tungsten Tellurite Glass Waveguide by Ag-Na Ion-Exchange, Mater. Lett., 2006, vol. 60, pp. 3413–3415.CrossRefGoogle Scholar
  4. 4.
    Quaranta, A., Cattaruzza, E., Gonella, F., et al., Field-Assisted Solid State Doping of Glasses for Optical Materials, Opt. Mater., 2010, vol. 32, no. 10, pp. 1352–1355.CrossRefGoogle Scholar
  5. 5.
    Nunzi Conti, G., Berneschi, S., et al., Rare Earth Doped Tungsten Tellurite Glasses and Waveguides: Fabrication and Characterization, J. Non-Cryst. Solids, 2004, vol. 343, pp. 345–346.Google Scholar
  6. 6.
    Nebolova, P., Spirkova, J., Perina, V., et al., A Study of the Preparation and Properties of Copper-Containing Optical Planar Glass Waveguides, Solid State Ionics, 2001, vol. 609, pp. 141–142.Google Scholar
  7. 7.
    Gonella, F., Caccavale, F., Bogomolova, L.D., et al., Experimental Study of Copper-Alkali Ion Exchange in Glass, J. Appl. Phys., 1998, vol. 83, p. 1200.CrossRefGoogle Scholar
  8. 8.
    Xesus Prieto-Blanco, Electro-Diffusion Equations of Monovalent Cations in Glass under Charge Neutrality Approximation for Optical Waveguide Fabrication, Opt. Mater., 2008, vol. 31, pp. 418–428.CrossRefGoogle Scholar
  9. 9.
    Inman, J.M., Bentley, J.L., and Houde-Walter, S.N., Chemical Structure and the Mixed Mobile Ion Effect in Silver-For-Sodium Ion Exchange in Silicate Glasses, J. Non-Cryst. Solids, 1995, vol. 191, pp. 209–215.CrossRefGoogle Scholar
  10. 10.
    Mehrer, H., Diffusion in Solids. Fundamentals, Methods, Materials, Diffusion-Controlled Processes, Berlin: Springer, 2007.Google Scholar
  11. 11.
    Messerschmidt, B., McIntyre, B.L., Houde-Walter, S.N., et al., Temperature Dependence of Silver-Sodium Interdiffusion in Micro-Optic Glasses, Opt. Mater., 1997, vol. 7, pp. 165–171.CrossRefGoogle Scholar
  12. 12.
    Quaranta, A., Cattaruzza, E., and Gonella, F., Modeling the Ion Exchange Process in Glass: Phenomenological Approaches and Perspectives, Mater. Sci. Eng., B, 2008, vol. 149, pp. 133–139.CrossRefGoogle Scholar
  13. 13.
    Stepanov, B., Ren, J., Wagner, T., et al., Solid State Field-Assisted Diffusion of Silver in Multi-Component Tellurite Glasses, J. Non-Crystal. Solids, 2011, vol. 357, pp. 3022–3026.CrossRefGoogle Scholar
  14. 14.
    Li, K., Wanga, G., Zhanga, J., and Hua, L., Broadband 2 mm Emission in Tm3+-Ho3+ Co-Doped TeO2-WO3-La2O3 Glass, Solid State Commun., 2010, vol. 150, pp. 1915–1918.CrossRefGoogle Scholar
  15. 15.
    Jihong, Z., Haizheng, T., Yu, C., and Xiujian, Z., Structure, Upconversion and Fluorescence Properties of Er3+-Doped TeO2-TiO2-La2O3 Tellurite Glass, J. Rare Earths, 2007, vol. 25, p. 108.CrossRefGoogle Scholar
  16. 16.
    Todorovic, M. and Radonjic, L., Study of the Mixed Alkali Effects in Glasses and Its Relation to Glass Structure and Alkali Earth Ion Content, Ceram. Int., 1989, vol. 15, pp. 383–388.CrossRefGoogle Scholar
  17. 17.
    El-Mallawany Raouf, A.H.L., London: CRC Press LLC, 2002.Google Scholar
  18. 18.
    Gonella, F., Canton, P., Cattaruzza, E., et al., Field Assisted Diffusion of Metals for the Synthesis of Nanocomposite Silicate Glasses, Mater. Sci. Eng., C, 2006, vol. 26, pp. 1087–1091.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • B. S. Stepanov
    • 1
    • 2
    Email author
  • T. Wagner
    • 1
  • J. Lorincik
    • 3
  • M. Frumar
    • 1
  • M. F. Churbanov
    • 2
  • Yu. I. Chigirinsky
    • 4
  1. 1.Faculty of Chemical Technology, Department of General and Inorganic Chemistry, Research CentreUniversity of PardubicePardubiceCzech Republic
  2. 2.Institute of Chemistry of High-Purity SubstancesRussian Academy of SciencesNizhni NovgorodRussia
  3. 3.Institute of Photonics and ElectronicsAcademy of Sciences of the Czech RepublicPrague 8Czech Republic
  4. 4.Lobachevsky State UniversityNizhni NovgorodRussia

Personalised recommendations