Inorganic Materials

, Volume 48, Issue 1, pp 34–39 | Cite as

Electrical conductivity and optical properties of thin carbon films grown from ethanol vapor

  • D. M. Sedlovets
  • A. N. Red’kin
  • V. I. Korepanov
  • O. V. Trofimov


Transparent, ultrathin carbon films have been grown through the pyrolysis of ethanol vapor at a reduced pressure on copper substrates at temperatures from 600 to 950°C. The electrical conductivity of the films increases with deposition temperature. Depending on deposition temperature, ethanol vapor pyrolysis may follow different mechanisms and the carbon deposition process has different key features, which influence the properties of the films. In the range 600–750°C, ethanol vapor pyrolysis is a catalytic process, which results in selective growth of a thin carbon film with an optical transmittance of ∼95% only on the copper surface. At higher temperatures, carbon deposition is nonselective, and the resultant films are darker. The carbon deposition mechanism is discussed in relation to the ethanol vapor pyrolysis temperature. The present results suggest that carbon deposition from ethanol vapor is a promising approach to producing transparent, conductive carbon films.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Geim, A.K. and Novoselov, K.S., The Rise of Graphene, Nat. Mater., 2007, vol. 6, pp. 183–191.CrossRefGoogle Scholar
  2. 2.
    Kim, K.S., Zhao, Y., Jang, H., et al., Large-Scale Pattern Growth of Graphene Films for Stretchable Transparent Electrodes, Nature, 2009, vol. 457, pp. 706–710.CrossRefGoogle Scholar
  3. 3.
    Bae, S., Kim, H., Lee, Y., et al., Roll-To-Roll Production of 30-Inch Graphene Films for Transparent Electrodes, Nat. Nanotechnol., 2010, vol. 5, pp. 574–578.CrossRefGoogle Scholar
  4. 4.
    Nandamuri, G., Roumimov, S., and Solanki, R., Chemical Vapor Deposition of Graphene Films, Nanotechnology, 2010, vol. 21, pp. 145 604–145 607.CrossRefGoogle Scholar
  5. 5.
    Maruyama, Sh., Kojima, R., Miyauchi, Y., et al., Low-Temperature Synthesis of High-Purity Single-Walled Carbon Nanotubes from Alcohol, Chem. Phys. Lett., 2002, vol. 360, pp. 229–234.CrossRefGoogle Scholar
  6. 6.
    Li, Z., Zhu, H., Wang, K., et al., Ethanol Flame Synthesis of Highly Transparent Carbon Thin Films, Carbon, 2011, vol. 49, pp. 237–241.CrossRefGoogle Scholar
  7. 7.
    Miyata, Y., Kamon, K., Ohashi, K., et al., Simple Alcohol-Chemical Vapor Deposition Synthesis of Single-Layer Graphenes Using Flash Cooling, Appl. Phys. Lett., 2010, vol. 96, no. 26, pp. 263 105–263 107.CrossRefGoogle Scholar
  8. 8.
    Paul, R.K., Badhulika, S., Niyogi, S., et al., The Production of Oxygenated Polycrystalline Graphene by One-Step Ethanol-Chemical Vapor Deposition, Carbon, 2011 (in press).Google Scholar
  9. 9.
    Dong, X., Wang, P., Fang, W., et al., Growth of Large-Sized Graphene Thin-Films by Liquid Precursor-Based Chemical Vapor Deposition under Atmospheric Pressure, Carbon, 2011 (in press).Google Scholar
  10. 10.
    Red’kin, A.N., Kipin, V.A., and Malyarevich, L.V., Synthesis of Fibrous Carbon Nanomaterials from Ethanol Vapor on a Nickel Catalyst, Inorg. Mater., 2006, vol. 42, no. 3, pp. 242–245.CrossRefGoogle Scholar
  11. 11.
    Morgenstern, D.A. and Fornango, J.P., Low-Temperature Reforming of Ethanol over Copper-Plated Raney Nickel: A New Route to Sustainable Hydrogen for Transportation, Energy Fuels, 2005, vol. 19, pp. 1708–1716.CrossRefGoogle Scholar
  12. 12.
    Juang, Zh.-Y., Wu, Ch.-Y., Lu, A.-Y., et al., Graphene Synthesis by Chemical Vapor Deposition and Transfer by a Roll-To-Roll Process, Carbon, 2010, vol. 48, no. 11, pp. 3169–3174.CrossRefGoogle Scholar
  13. 13.
    Li, D., Muller, M.B., Gilje, S., et al., Processable Aqueous Dispersions of Graphene Nanosheets, Nat. Nanotechnol., 2008, vol. 3, pp. 101–105.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • D. M. Sedlovets
    • 1
  • A. N. Red’kin
    • 1
  • V. I. Korepanov
    • 1
  • O. V. Trofimov
    • 1
  1. 1.Institute of Microelectronics Technology and High-Purity MaterialsRussian Academy of SciencesChernogolovka, Moscow oblastRussia

Personalised recommendations