Inorganic Materials

, 45:1439 | Cite as

High-purity chalcogenide glasses for fiber optics

  • G. E. Snopatin
  • V. S. Shiryaev
  • V. G. Plotnichenko
  • E. M. Dianov
  • M. F. Churbanov


The data on the present degree of purity of chalcogenide glasses for fiber optics, on their methods of production and on the properties, which are essential for their actual application, are generalized. The content of limiting impurities in the best samples of chalcogenide glasses is 10–100 ppb wt.; of heterophase inclusions with size of about 100 nm is less than 103 cm−3. On the basis of chalcogenide glasses the multimode and single mode optical fibers are produced with technical and operation characteristics sufficient for a number of actual applications. The minimum optical losses of 12–14 dB/km at 3–5 µm are attained in the optical fiber from arsenic-sulfide glass. The level of losses in standard chalcogenide optical fibers is 50–300 dB/km in 2–9 µm spectral range. The factors, affecting the optical absorption of glasses and optical fibers, are analyzed, and the main directions in further development of chalcogenide glasses as the materials for fiber optics are considered.


Arsenic Optical Loss Chalcogenide Glass GeSe Nonlinear Refractive Index 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Frerics, R.J., J. Opt. Soc. Am., 1953, vol. 43, p. 197.CrossRefGoogle Scholar
  2. 2.
    Standler, R.R. and Henderson, R.E., Infrared Fiber Optics Technique, Infrared Phys., 1963, vol. 3, pp. 223–227.CrossRefGoogle Scholar
  3. 3.
    Kapany, N.S. and Simms, R.S., Recent Developments in Infrared Fiber Optics, Infrared Phys., 1965, vol. 5, pp. 69–80.CrossRefGoogle Scholar
  4. 4.
    Katsuayama, T. and Matsumura, H., Infrared Optical Fibers, Bristol and Philadelphia: Adam Hilger, 1988.Google Scholar
  5. 5.
    Devyatykh, G.G., Dianov, E.M., Plotnichenko, V.G., Skripachev, I.V., and Churbanov, M.F., Fiber Waveguides Based on High-Purity Chalcogenide Glasses, High-Purity Substances, 1991, vol. 5, no. 1, pp. 1–27.Google Scholar
  6. 6.
    Nishii, J. and Yamashita, T., Chalcogenide Glass-Based Fibers, in Infrared Fiber Optics, Sanghera, J.S. and Aggarwal, I.D., Eds., Boca Raton, Boston, London, New York, Washington: CRC Press, 1998, pp. 143–183.Google Scholar
  7. 7.
    Churbanov, M.F. and Plotnichenko, V.G., Optical Fibers from High-Purity Arsenic Chalcogenide Glasses. Semiconducting Chalcogenide Glass. III. Application of Chalcogenide Fibers, Glasses Semiconductor and Semimetals, Amstrerdam: Elsevier, 2004, vol. 80, pp. 209–230.Google Scholar
  8. 8.
    Inagawa, I., Iizuka, R., Yamagishi, T., and Yokota, R., Optical and Thermal Properties of Chalcogenide Ge-As-Se-Te Glasses for IR Fibers, J. Non-Crystal. Solids, 1987, vols. 95, 96, pp. 801–808.CrossRefGoogle Scholar
  9. 9.
    Feltz, A., Amorphous Inorganic Materials and Glasses, Weinheim: VCH, 1993.Google Scholar
  10. 10.
    Kokorina, V.F., Glasses for Infrared Optics, Boca Raton: CRC, 1996.Google Scholar
  11. 11.
    Minaev, V.S., Stekloobraznye poluprovodnikovye splavy (Vitreous Semiconductor Alloys), Moscow: Metallurgiya, 1991.Google Scholar
  12. 12.
    Bletskan, D.I., Glass Formation in Binary and Ternary Chalcogenide Systems, Chalcogenide Lett., 2006, vol. 3, no. 11, pp. 81–119.Google Scholar
  13. 13.
    Mikhailov, M.D. and Tver’yanovich, A.S., Kriticheskie skorosti okhlazhdeniya nekotorykh khalkogenidnykh stekloobrazuyushchikh rasplavov (Critical Cooling Rates of Chalcogenide Glass-forming Melts), Fiz. Khim. Stekla, 1986, vol. 12, no. 3, pp. 274–284.Google Scholar
  14. 14.
    Lapin, Yu.K., Mikhailov, M.D., Ananichev, V.A., Baidakov, L.A., and Tetereva, V.A., Kristallizatsiya stekol v sistemakh As-Se i Tl-As-Se pri nagrevanii (Crystallization of As-Se and Tl-As-Se Glasses during Heating), Fiz. Khim. Stekla, 1991, vol. 17, no. 1, pp. 3–7.Google Scholar
  15. 15.
    Churbanov, M.F. and Shiryaev, V.S., Kristallizatsiya khalkogenidnykh stekol (Crystallization of Chalcogenide Glasses), Vysokochistye Veshchestva, 1994, no. 4, pp. 21–33.Google Scholar
  16. 16.
    Shiryaev, V.S., Adam, J.-L., Zhang, X.H., and Churbanov, M.F., Study of Characteristic Temperatures and Nonisothermal Crystallization Kinetics in As-Se-Te Glass System, Solid State Sci., 2005, vol. 7, pp. 209–215.CrossRefGoogle Scholar
  17. 17.
    Wahab, L.A. and Fayek, S.A., Study of Non-isothermal Kinetics and Thermal Characterization of As-Se-Te System, Solid State Commun., 1996, vol. 100, no. 5, pp. 345–350.CrossRefGoogle Scholar
  18. 18.
    Shiryaev, V.S., Adam, J.-L., and Zhang, X.H., Calorimetric Study of Characteristic Temperatures and Crystallization Behaviour in Ge-As-Se-Te Glass System, J. Phys. Chem. Solids, 2004, vol. 65, no. 10, pp. 1737–1744.CrossRefGoogle Scholar
  19. 19.
    Tikhomirov, V.K., Furniss, D., Seddon, A.B., Savage, J.A., Mason, P.D., Orchard, D.A., and Lewis, K.L., Glass Formation in the Te-Enriched Part of the Quaternary Ge-As-Se-Te System and Its Implication for Mid-Infrared Optical Fibres, Infrared Physics and Technology, 2004, vol. 45, pp. 115–123.CrossRefGoogle Scholar
  20. 20.
    Devyatykh, G.G., Churbanov, M.F., Shiryaev, V.S., Shipunov, V.A., and Kuznetsov, V.V., Kinetics of Crystallization of GeS3.3 Glass, High-Purity Substances, 1993, vol. 7, no. 6, pp. 638–643.Google Scholar
  21. 21.
    Baro, M.D., Clavaguera, N., Surinach S., et al., DSC Study of Some Ge-Sb-S Glasses, J. Mat. Sci., 1991, vol. 26, pp. 3680–3684.CrossRefGoogle Scholar
  22. 22.
    Takebe, H., Hirakawa, T., Ichiki, T., and Morinaga, K., Thermal Stability and Structure of Ge-Sb-S Glasses, J. Ceram. Soc. Jpn., 2003, vol. 111, no. 8, pp. 572–575.CrossRefGoogle Scholar
  23. 23.
    Churbanov, M.F., Shiryaev, V.S., Scripachev, I.V., Snopatin, G.E., Gerasimenko, V.V., Fadin, I.E., Smetanin, S.V., and Plotnichenko, V.G., Optical Fibers Based on As-S-Se Glass System, J. Non-Crystal. Solids, 2001, vol. 284, nos. 1–3, pp. 146–152.CrossRefGoogle Scholar
  24. 24.
    Petit, L., Carlie, N., Adamietz, F., Couzi, M., Rodriguez, V., and Richardson, K.C., Correlation between Physical, Optical and Structural Properties of Sulfide Glasses in the System Ge-Sb-S, Materials Chemistry and Physics, 2006, vol. 97, pp. 64–70.CrossRefGoogle Scholar
  25. 25.
    Burdiyan, I.I. and Batalin, V.A., Thermal Conductivity and Heat Capacity of (As2S3)x(As2Se3)1 − x Glasses, Inorg. Mat., 1995, vol. 31, no. 1, pp. 116, 117.Google Scholar
  26. 26.
    Vlcek, M., Stronski, A., Sklenai, A., Wagner, T., and Kasap, S.O., Structure and Imaging Properties of As40S60 − xSex Layers as a Function of Their Composition, J. Non-Crystal. Solids, 2000, vols. 266–269, pp. 964–968.CrossRefGoogle Scholar
  27. 27.
    Troles, J., Niu, Y., Duverger-Arfuso, C., Smectala, F., Brilland, L., Nazabal, V., Moizan, V., Desevedavy, F., and Houizot, P., Synthesis and Characterization of Chalcogenide Glasses from the System Ga-Ge-Sb-S and Preparation of a Single-Mode Fiber at 1.55 µm, Mat. Res. Bull., 2008, vol. 43, pp. 976–982.CrossRefGoogle Scholar
  28. 28.
    Devyatykh, G.G., Dianov, E.M., Plotnichenko, V.G., Pushkin, A.A., Pyrkov, Yu.N., Scripachev, I.V., Snopatin, G.E., Churbanov, M.F., and Shirjaev, V.S., Low Loss Infrared Arsenic Chalcogenide Glass Optical Fibers, SPIE Proc., vol. 4083 (“Advances in Fiber Optics”), 2000, pp. 229–237.CrossRefGoogle Scholar
  29. 29.
    Churbanov, M.F., Shiryaev, V.S., Smetanin, S.V., Dianov, E.M., Plotnichenko, V.G., Hua Qingheng, Li Guangping, and Shao Hongfeng, Effect of Sulfur on the Optical Transmission of As2Se3 and As2Se1.5Te1.5 Glasses in the Range 500–100 cm−1, Inorg. Mat., 1999, vol. 35, no. 12, pp. 1229–1234.Google Scholar
  30. 30.
    Rangel Rojoa, R., Kosa, T., Hajto, E., Ewen, P.J.S., Owen, A.E., Kar, A.K., and Wherrett, B.S., Opt. Commun., 1994, vol. 109, p. 145.CrossRefGoogle Scholar
  31. 31.
    Cerqua-Richardson, K.A., McKinley, J.M., Lawrence, B., Joshi, S., and Villeneuve, B., Opt. Mat., 1998, vol. 10, p. 155.CrossRefGoogle Scholar
  32. 32.
    Smectala, F., Quemard, C., Leneindre, L., Lucas, J., Barthelemy, B., and De Angelis, C., J. Non-Crystal. Solids, 1998, vol. 239, p. 139.CrossRefGoogle Scholar
  33. 33.
    Sanghera, J.S., Florea, C.M., Shaw, L.B., Pureza, P., Nquyen, V.Q., Bashkansky, M., Dutton, Z., and Aggarwal, I.D., Non-linear Properties of Chalcogenide Glasses and Fibers, J. Non-Cryst. Solids, 2008, vol. 354, pp. 462–467.CrossRefGoogle Scholar
  34. 34.
    Harbold, J.M., May, P.O., Wise, F.W., and Aitken, B.G., Highly Nonlinear Ge-As-Se and Ge-As-S-Se Glasses for All-Optical Switching, IEEE Technol. Lett. 2006, vol. 14, no. 6, pp. 822–824.Google Scholar
  35. 35.
    Troles, J., Smectala, F., Boudebs, G., Monteil, A., Bureau, B., and Lucas, J., Chalcogenide Glasses as Solid State Optical Limeters at 1.064 µm, Opt. Mater., 2004, vol. 25, pp. 231–237.CrossRefGoogle Scholar
  36. 36.
    Sanghera, J., Aggarwal, I., Busse, L., Pureza, P., Nguyen, V., Miklos, R., Kung, F., and Mossadegh, R., Development of Low Loss IR Transmitting Chalcogenide Glass Fibers, SPIE, 1995, vol. 2396, pp. 71–77.CrossRefGoogle Scholar
  37. 37.
    Henderson, D.W. and Ast, D.G., Viscosity and Crystallization Kinetics of As2Se3, J. Non-Crystal. Solids, 1984, vol. 64, pp. 43–70.CrossRefGoogle Scholar
  38. 38.
    Hari, P., Taylor, P.C., King, W.A., and LaCourse, W.C., Metastable, Drawing-Induced Crystallization in As2Se3 Fibers, J. Non-Crystal. Solids, 1998, vols. 227–230, pp. 789–793.CrossRefGoogle Scholar
  39. 39.
    Hach, C.T., Cerqua-Richardson, K., Varner, J.R., and LaCourse, W.C., Density and Microhardness of As-Se Glasses and Glass Fibers, J. Non-Crystal. Solids, 1997, vol. 209, pp. 159–165.CrossRefGoogle Scholar
  40. 40.
    Griffiths, J.E., Espinosa, G.P., Remeika, J.P., and Phillips, J.C., Reversible Reconstruction and Crystallization of GeSe2 Glass, Solid State Commun., 1981, vol. 40, no. 12, pp. 1077–1080.CrossRefGoogle Scholar
  41. 41.
    Churbanov, M.F., Purification of Chalcogenide Glasses, in Properties, Processing and Applications of Glass and Rare Earth Doped Glasses for Optical Fibers, Hewak, D., Ed., EMIS Date-Reviews Series No. 22, pp. 340–343.Google Scholar
  42. 42.
    Skripachev, I.V., Devyatykh, G.G., Churbanov, M.F., Boiko, V.A., and Bagrov, A.M., High-Purity Chalcogenide Glasses for Fiber Optics, Vysokochistye Veshchestva, 1987, no. 1, pp. 120–129.Google Scholar
  43. 43.
    Katsuyama, T., Ishida, K., Satoh, S., and Matsumura, H., Low-Loss Ge-Se Chalcogenide Glass Optical Fibres, Appl. Phys. Lett., 1984, vol. 45, pp. 925–927.CrossRefGoogle Scholar
  44. 44.
    Le Sergent, C., Chalcogenide Glass Optical Fibers—An Overview, Proc. SPIE, 1987, vol. 799, pp. 18–24.Google Scholar
  45. 45.
    Hu, J., Tarasov, V., Carlie, N., Petit, L., Agarwal, A., Richardson, K., and Kimerling, L., Exploration of Waveguide Fabrication from Thermally Evaporated Ge-Sb-S Glass Films, Optical Materials, 2008, vol. 30, no. 10, pp. 1560–1566.CrossRefGoogle Scholar
  46. 46.
    Lines, M.E., Scattering Losses in Optical Fiber Materials. II. Numerical Estimates, J. Appl. Phys., 1984, vol. 55, pp. 4058–4063.CrossRefGoogle Scholar
  47. 47.
    Churbanov, M.F., Gerasimenko, V.V., Malygina, L.S., Smetanin, S.V., Suchkov, A.I., Shiryaev, V.S., Filatov, D.O., and Kruglov, A.V., Formation of Second-Phase Inclusions in Molten As2Se3 Melt via Chemical Transport of Carbon, Inorg. Mat., 2001, vol. 37, no. 4, pp. 339–341.CrossRefGoogle Scholar
  48. 48.
    Churbanov, M.F., Shiryaev, V.S., Smetanin, S.V., Pimenov, V.G., Zaitseva, E.A., Kryukova, E.B., and Plotnichenko, V.G., Effect of Oxygen Impurity on the Optical Transmission of As2Se3.4 Glass, Inorg. Mat., 2001, vol. 37, no. 11, pp. 1389–1396.Google Scholar
  49. 49.
    Churbanov, M.F., High-Purity Chalcogenide Glasses as Materials for Fiber Optics, J. Non-Cryst. Solids, 1995, vol. 184, pp. 25–29.CrossRefGoogle Scholar
  50. 50.
    Devyatykh, G.G., Churbanov, M.F., Scripachev, I.V., Snopatin, G.E., Dianov, E.M., and Plotnichenko, V.G., Recent Developments in As-S Glass Fibers, Proc. XI Int. Symp. on Non-Oxide and New Optical Glasses, 1998, Sheffield, US, pp. 179–183.Google Scholar
  51. 51.
    Shiryaev, V.S., Smetanin, S.V., Ovchinnikov, D.K., Churbanov, M.F., Krukova, E.B., and Plotnichenko, V.G., Effect of Oxygen and Carbon Impurities on the Optical Transparency of As2Se3 Glass, Inorg. Mat., 2005, vol. 41, no. 3, pp. 308–314.CrossRefGoogle Scholar
  52. 52.
    Kamensky, V.A., Scripachev, I.V., Snopatin, G.E., Pushkin, A.A., and Churbanov, M.F., High-Power As-S Glass Fiber Delivery Instrument for Pulse YAG:Er Laser Radiation, Appl. Opt., 1998, vol. 37, pp. 5596–5599.CrossRefGoogle Scholar
  53. 53.
    Popesku, M.A., Non-Crystalline Chalogenides, Dordrecht: Kluwer Academic, 2000.Google Scholar
  54. 54.
    Devyatykh, G.G., Churbanov, M.F., Shiryaev, V.S., Snopatin, G.E., and Gerasimenko, V.V., Impurity Inclusions in Extra-Pure Arsenic and Chalcogens, Inorg. Mat., 1998, vol. 34, no. 9, pp. 902–906.Google Scholar
  55. 55.
    Devyatykh, G.G., Churbanov, M.F., Scripachev, I.V., Snopatin, G.E., Dianov, E.M., and Plotnichenko, V.G., Recent Development in As-S Glass Fibers, J. Non-Cryst. Solids, 1999, vol. 256–257, pp. 318–322.CrossRefGoogle Scholar
  56. 56.
    Churbanov, M.F., Recent Advances in Preparation of High-Purity Chalcogenide Glasses, J. Non-Cryst. Solids, 1992, vol. 140, pp. 324–326.CrossRefGoogle Scholar
  57. 57.
    Shiryaev, V.S., Churbanov, M.F., Dianov, E.M., Plotnichenko, V.G., Adam, J.-L., and Lucas, J., Recent Progress in Preparation of Chalcogenide As-Se-Te Glasses with Low Impurity Content, J. Optoelectronics Adv. Mat., 2005, vol. 7, no. 4, pp. 1773–1780.Google Scholar
  58. 58.
    Sanghera, J.S., Nguyen, V.Q., Pureza, P.C., Kung, F.H., Miklos, R., and Aggarwal, I.D., Fabrication of Low-Loss IR-Transmitting Ge30As10Se30Te30 Glass Fibers, J. Lightwave Technol., 1994, vol. 12, no. 5, pp. 737–741.CrossRefGoogle Scholar
  59. 59.
    Nguyen, V.Q., Sanghera, J.A., Pureza, P., Kung, F.H., Aggarwal, I.D., Fabrication of Arsenic Selenide Optical Fiber with Low Hydrogen Impurities, J. Am. Ceram. Soc., 2002, vol. 85, pp. 2849–2851.CrossRefGoogle Scholar
  60. 60.
    Shibata, S., Manabe, T., and Horiguichi, M., Preparation of Ge-S glass Fibers with Reduced OH, SH Content, Jpn. J. Appl. Phys., 1981, vol. 20, no. 1, pp. 13–16.CrossRefGoogle Scholar
  61. 61.
    Churbanov, M.F., High-Purity Glasses Based on Arsenic Chalcogenides, J. Optoelectronics and Advanced Materials, 2001, vol. 3, pp. 341–349.Google Scholar
  62. 62.
    Churbanov, M.F., Shiryaev, V.S., Suchkov, A.I., Pushkin, A.A., Gerasimenko, V.V., Shaposhnikov, R.M., Dianov, E.M., Plotnichenko, V.G., Koltashev, V.V., Pyrkov, Yu.N., Lucas, J., and Adam, J.-L., High-Purity As-S-Se and As-Se-Te Glasses and Optical Fibers, Inorg. Mat., 2007, vol. 43, no. 4, pp. 506–512.Google Scholar
  63. 63.
    Shiryaev, V.S., Ketkova, L.A., Churbanov, M.F., Potapov, A.M., Troles, J., Houizot, P., and Adam, J.-L., Heterophase Inclusions and Dissolved Impurities in Ge25Sb10S65 Glasses, J. Non-Cryst. Solids, 2009 (in press).Google Scholar
  64. 64.
    Shiryaev, V.S., Adam, J.-L., Zhang, X.H., Boussard-Pledel, C., Lucas, J., and Churbanov, M.F., Infrared Fibers Based on Te-As-Se Glass System with Low Optical Losses, J. Non-Cryst. Solids, 2004, vol. 336, pp. 113–119.CrossRefGoogle Scholar
  65. 65.
    Troles, J., Shiryaev, V., Churbanov, M., Houizot, P., Brilland, L., Desevedavy, F., Charpentier, F., Pain, T., Snopatin, G., and Adam, J.-L., Preparation of Low Losses GeSe4 Fibers, Optical Materials, 2009 (in press).Google Scholar
  66. 66.
    Snopatin, G.E., Matveeva, M.Yu., Churbanov, M.F., Krukova, E.B., and Plotnichenko, V.G., Izmenenie sostava stekloobrazuyushchikh rasplavov sistemy As-S pri vacuumnoi peregonke (Change in Composition of Glass-forming Melts of As-S System During Vacuum Distillation), Neorg. Mat., 2005, vol. 41, no. 2, pp. 246–249.Google Scholar
  67. 67.
    Snopatin, G.E., Churbanov, M.F., Devyatykh, G.G., Dianov, E.M., Plotnichenko, V.G., and Matveeva, M.Yu., Technique for Production of Pairs of High-Purity Glasses of As-S System for the Core and Cladding of Single-Mode and Multi-Mode Optical Fibers, RF Patent no. 2237030, 2003.Google Scholar
  68. 68.
    De Sario, M., Mescia, L., Prudenzano, F., Smektala, F., Deseveday, F., Nazabal, V., Troles, J., and Brilland, L., Feasibility of Er3+-doped, Ga5Ge20Sb10S65 Chalcogenide Microstructured Optical Fiber Amplifiers, Optics Laser Technol., 2009, vol. 41, no. 1, pp. 99–106.CrossRefGoogle Scholar
  69. 69.
    Zheltikov, A.M., Microstructured Optical Fibers for New Generation of Fiber-optic Sources and Converters of Light Pulses, Usp. Fiz. Nauk, 2007, vol. 177, no. 7, pp. 737–762.CrossRefGoogle Scholar
  70. 70.
    Skripachev, I.V., Plotnichenko, V.G., Snopatin, G.E., Pushkin, A.A., and Churbanov, M.F., Production of Double-Layered Optical Fibers on the Basis of High-Purity Glasses of As-S, As-Se and Ge-As-Se Systems, Vysokochistye Veshchestva, 1994, no. 4, pp. 34–41.Google Scholar
  71. 71.
    Churbanov, M.F., Pushkin, A.A., Gerasimenko, V.V., Suchkov, A.I., Polyakov, V.S., Koltashev, V.V., and Plotnichenko, V.G., Origin of Microinhomogeneities in As-S-Se Glass Fibers Fabricated by the Double-Crucible Method, Inorg. Mat., 2007, vol. 43, no. 4, pp. 436–440.CrossRefGoogle Scholar
  72. 72.
    Smectala, F., Le Foulgoc, K., Le Neindre, L., Blanchetiere, C., Zhang X.H., and Lucas, J., TeX-Glass Infrared Optical Fibers Delivering Medium Power from a CO2 Laser, Optical Materials, 1999, vol. 13, pp. 271–276.CrossRefGoogle Scholar
  73. 73.
    Sanghera, J., Aggarwal, I., Busse, L., Pureza, P., Nguyen, V., Miklos, R., Kung, F., and Mossadegh, R., Development of Low Loss IR Transmitting Chalogenide Glass Fibers, SPIE, 1995, vol. 2396, no. 5, pp. 71–77.CrossRefGoogle Scholar
  74. 74.
    Le Coq, D., Boussard-Pledel, C., Fonteneau, G., Pain, T., Bureau, B., and Adam, J.-L., A New Approach of Preform Fabrication for Chalcogenide Fibers, J. Non-Crystal. Solids, 2003, vols. 326, 327, pp. 451–454.CrossRefGoogle Scholar
  75. 75.
    Churbanov, M.F., Shaposhnikov, R.M., Snopatin, G.E., Shabarov, V.V., and Plotnichenko, V.G., Flow of Viscoplastic Arsenic Selenide Melt in Circular-Cylindrical Channels, Inorg. Mat., 2005, vol. 41, no. 11, pp. 1301–1306.Google Scholar
  76. 76.
    Churbanov, M.F., Shaposhnikov, R.M., Shabarov, V.V., Snopatin, G.E., and Plotnichenko, V.G., Flow of a Viscoplastic Arsenic Selenide Melt in Annular Channels, Inorg. Mat., 2006, vol. 42, no. 2, pp. 215–219.CrossRefGoogle Scholar
  77. 77.
    Vasil’ev, A.V. and Plotnichenko, V.G., Measurement of Optical Parameters of IR Optical Fibers, Kvant. Elektron., 1987, vol. 14, no. 4, pp. 827–833.Google Scholar
  78. 78.
    Churbanov, M.F., Shiryaev, V.S., Skripachev, I.V., Snopatin, G.E., Pimenov, V.G., Smetanin, S.V., Shaposhnikov, R.M., Fadin, I.E., Pyrkov, Yu.N., and Plotnichenko, V.G., High-Purity As2S1.5Se1.5 Glass Optical Fibers, Inorg. Mat., 2002, vol. 38, no. 2, pp. 193–197.CrossRefGoogle Scholar
  79. 79.
    Dianov, E.M., Plotnichenko, V.G., Pyrkov, Yu.N., Smol’nikov, I.V., Koleskin, S.B., Devyatykh, G.G., Churbanov, M.F., Snopatin, G.E., Skripachev, I.V., and Shaposhnikov, R.M., Single-Mode As-S Glass Fibers, Inorg. Mat., 2003, vol. 39, no. 7, pp. 627–630.CrossRefGoogle Scholar
  80. 80.
    Shiryaev, V.S., Boussard-Pledel, C., Houizot, P., Jouan, T., Adam, J.-L., and Lucas, J., Single-Mode Iinfrared Fibers Based on Te-As-Se Glass System, Mater. Sci. Eng. B, 2006, vol. 127, nos. 2, 3, pp. 138–143.CrossRefGoogle Scholar
  81. 81.
    Antipenko, A.G., Artem’ev, N.B., Betin, A.A., Kamenskii, V.A., Novikov, V.P., Plotnichenko, V.G., Skripachev, I.V., and Snopatin, G.E., Application of YAG:Erlaser with Chalcogenide Optical Fiber in Laser Surgery, Kvant. Elektron., 1995, vol. 22, pp. 523–526.Google Scholar
  82. 82.
    Churbanov, M.F., Shiryaev, V.S., Gerasimenko, V.V., Pushkin, A.A., Skripachev, I.V., Snopatin, G.E., and Plotnichenko, V.G., Stability of the Optical and Mechanical Properties of Chalcogenide Fibers, Inorg. Mat., 2002, vol. 38, no. 10, pp. 1063–1068.CrossRefGoogle Scholar
  83. 83.
    Svet, D.Ya., Kling, B.N., Devyatykh, G.G., Vasil’ev, A.V., Dianov, E.M., Plotnichenko, V.G., Skripachev, I.V., and Churbanov, M.F., Nizkotemperaturnyi pirometr s gibkim volokonnym svetovodom (Low-temperature Pyrometer with Flexible Optical Fiber), Prib. Sist. Uprav., 1985, no. 2, pp. 18, 19.Google Scholar
  84. 84.
    Vasil’ev, A.V., Devyatykh, G.G., Dianov, E.M., Plotnichenko, V.G., Skripachev, I.V., Sysoev, V.K., and Churbanov, M.F., Ispol’zovanie IK volokonnykh svetovodov v pirometricheskikh izmereniyakh (Application of IR Optical Fibers in Pyrometric Measurements), Zh. Prikl. Spektrosk., 1985, vol. XLII, no. 5, pp. 862–864.Google Scholar
  85. 85.
    Devyatykh, G.G., Ivantsov, V.B., Lebedev, V.S., Lychev, V.V., Orlov, I.Ya., Plotnichenko, V.G., Skripachev, I.V., Snopatin, G.E., Solov’ev, V.M., and Churbanov, M.F., Optical Fiber IR Radiometer for Medical Diagnosis, High-Purity Substances, 1991, vol. 5, no. 1, pp. 188–191.Google Scholar
  86. 86.
    Saito, M., Takizawa, M., Sakuragi, S., and Tanei, F., Infrared Image Guide with Bundle As-S Glass Fibers, Appl. Opt., 1985, vol. 24, no. 9, p. 2304.CrossRefGoogle Scholar
  87. 87.
    Suto, H., Chalcogenide Fiber Bundle for 3D Spectroscopy, Infrared Phys. Technol., 1997, vol. 38, p. 93.CrossRefGoogle Scholar
  88. 88.
    Sanghera, J.N. and Aggarwal, I.D., Active and Passive Chalcogenide Glass Optical Fibers for IR Applications: A Review, J. Non-Cryst. Solids, 1999, vols. 256, 257, pp. 6–16.CrossRefGoogle Scholar
  89. 89.
    Sanghera, J.S., Kung, F.H., Busse, L.E., Pureza, P.C., and Aggarwal, I.D., Infrared Evanescent Absorption Spectroscopy of Toxic Chemicals using Chalcogenide Glass Fibers, J. Am. Ceram. Soc., 1995, vol. 78, pp. 2198–2202.CrossRefGoogle Scholar
  90. 90.
    Nau, G., Bucholtz, F., Ewing, K.J., Vohra, S.T., Sanghera, J.S., and Aggarwal, I.D., Fiber Optic Sensor System for Detection of Organic Contaminations in Soil, SPIE, 1996, vol. 2883, p. 682.Google Scholar
  91. 91.
    Hocde, S., Boussard-Pledel, C., Fonteneau, G., and Lucas, J., Chalcogenide Based Glasses for IR Fiber Chemical Sensors, Solid States Sci., 2001, vol. 3, no. 3, pp. 279–284.CrossRefGoogle Scholar
  92. 92.
    Zasavitskii, I.I., Maksimov, G.B., Radionov, A.R., Skripachev, I.V., Stepanov, E.B., Khorshev, V.A., Shipunov, V.A., and Shchapin, S.M., Sistema kriostatirovaniya poluprovodnikovogo lazera s vylhodom izlucheniya po volokonnomu IK-svetovodu (Cryostatination System of Semiconductor Laser with Radiation Yield via IR Optical Fiber), Vysokochistye Veshchestva, 1987, no. 5, pp. 202–204.Google Scholar
  93. 93.
    Kuznetsov, A.I., Nadezshdinskii, A.I., Moskalenko, K.L., Stepanov, E.V., Davarashvilli, O.I., Zasavitskii, I.I., Plotnichenko, V.G., and Artjushenko, V.G., Tunable Diode Laser Spectroscopy Accessories Based on Middle IR Halide and Chalcogenide Fibers, Proc. SPIE, 1993, vol. 1724, pp. 104–118.CrossRefGoogle Scholar
  94. 94.
    Stepanov, E.V., Kouznetsov, A.L., Zyrianov, P.V., Plotnichenko, V.G., Selivanov, Yu.G., and Artjushenko, V.G., Multicomponent Fiber-Optical Gas Sensor Based on MIR Tunable Diode Lasers, Infrared Phys. Technol., 1996, vol. 37, pp. 149–153.CrossRefGoogle Scholar
  95. 95.
    Nishii, J., Morimoto, S., Inagawa, I., Iizuka, R., Yamashita, T., and Yamagishi, T., Recent Aadvances and Trends in Chalcogenide Glass Fiber Technology: A Review, J. Non-Cryst. Solids, 1992, vol. 140, pp. 199–208.CrossRefGoogle Scholar
  96. 96.
    Churbanov, M.F., Scripachev, I.V., Shiryaev, V.S., Plotnichenko, V.G., Smetanin, S.V., Kryukova, E.B., Pyrkov, Yu.N., and Galagan, B.I., Chalcogenide Glasses Doped with Tb, Dy and Pr Ions, J. Non-Cryst. Solids, 2003, vols. 326, 327, pp. 301–305.CrossRefGoogle Scholar
  97. 97.
    Mori, A., Ohishi, Y., Kanamori, T., and Sudo, S., Optical Amplification with Neodymium-Doped Chalcogenide Glass Fiber, Appl. Phys. Lett., 1997, vol. 70, p. 1230.CrossRefGoogle Scholar
  98. 98.
    Cole, B., Shaw, L.B., Pureza, P.C., Mossadegh, R., Sanghera, J.S., and Aggarwal, I.D., Rare-Earth Doped Selenide Glasses and Fibers for Active Applications in the Near and Mid-IR, J. Non-Cryst. Solids, 1999, vols. 256, 257, pp. 253–259.CrossRefGoogle Scholar
  99. 99.
    Asobe, M., Nonlinear Optical Properties of Chalcogenide Glass Fibers and Their Application to All-Optical Switching, Optical Fiber Technology, 1997, vol. 3, pp. 142–148.CrossRefGoogle Scholar
  100. 100.
    Zakery, A. and Elliot, S.R., Optical Nonlinearities in Chalcogenide Glasses and Their Application, Heidelberg: Springer, 2007.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • G. E. Snopatin
    • 1
  • V. S. Shiryaev
    • 1
  • V. G. Plotnichenko
    • 2
  • E. M. Dianov
    • 2
  • M. F. Churbanov
    • 1
  1. 1.Institute of Chemistry of High-Purity SubstancesRussian Academy of SciencesNizhny NovgorodRussia
  2. 2.Fiber Optics Research CenterRussian Academy of SciencesMoscowRussia

Personalised recommendations