Inorganic Materials

, 45:1146

Fabrication and properties of SiO2/TiO2 composites

  • A. N. Murashkevich
  • A. S. Lavitskaya
  • O. A. Alisienok
  • I. M. Zharskii
Article

Abstract

Composites in the form of precipitated powders, hybrid xerogels, and SiO2 core/TiO2 shell particles have been produced via hydrolysis of precursors (alkoxides and inorganic derivatives of titanium and silicon) and have been characterized by differential thermal analysis, X-ray diffraction, adsorption measurements, and macroelectrophoresis. The results demonstrate that heat treatment of the composites leads to crystallization of the titanium-containing component and, accordingly, reduces their specific surface area. Hydrothermal treatment enables the fabrication of materials in which TiO2 nanocrystals are evenly distributed over an amorphous SiO2 matrix.

References

  1. 1.
    Sinitskii, A.S., Knotko, A.V., and Tret’yakov, Yu.D., Synthesis of SiO2 Photonic Crystals via Self-Organization of Colloidal Particles, Neorg. Mater., 2005, vol. 41, no. 11, pp. 1336–1342 [Inorg. Mater. (Engl. Transl.), vol. 41, no. 11, pp. 1178–1184].CrossRefGoogle Scholar
  2. 2.
    Kraev, A.S., Agafonov, A.V., Nefedova, T.A., et al., Physicomechanical Properties of an Electrorheological Fluid Based on Nanoparticulate Titania, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 2007, vol. 50, no. 6, pp. 35–38.Google Scholar
  3. 3.
    Martl, M., Kuhn, B., Oberlein, G., et al., US Patent 5 789 528, 1998.Google Scholar
  4. 4.
    Zhou Yasong and Jiang Guowei, Study on Properties of Composite Oxides TiO2/SiO2, Chin. J. Chem. Eng., 2002, vol. 10, no. 3, pp. 349–353.Google Scholar
  5. 5.
    Rana, M.S., Maity, S.K., Ancheyta, J., et al., TiO2-SiO2 Supported Hydrotreating Catalysts: Physico-Chemical Characterization and Activities, Appl. Catal., A, 2003, vol. 253, pp. 165–176.CrossRefGoogle Scholar
  6. 6.
    Kholdeeva, O.A. and Trukhan, N.N., Mesoporous Titanium Silicates As Catalysts for Selective Liquid-Phase Oxidation of Organics, Usp. Khim., 2006, vol. 75, no. 5, pp. 460–483.Google Scholar
  7. 7.
    Vohra, M.S. and Tanaka, K., Photocatalytic Degradation of Aqueous Pollutants Using Silica-Modified TiO2, Water Res., 2003, vol. 37, pp. 3992–3996.CrossRefGoogle Scholar
  8. 8.
    Tsunehiro Tanaka, Kentaro Teramura, Takashi Yamamoto, et al., TiO2/SiO2 Photocatalysts at Low Levels of Loading: Preparation, Structure and Photocatalysis, J. Photochem. Photobiol., A, 2002, vol. 148, pp. 277–281.CrossRefGoogle Scholar
  9. 9.
    Panayotov, D. and Yates, J.T., Jr., Electron Exchange on TiO2-SiO2 Photocatalysts during O2 and Organic Molecule Adsorption—The Role of Adsorbate Electrophilicity, Chem. Phys. Lett., 2003, vol. 381, pp. 154–162.CrossRefGoogle Scholar
  10. 10.
    Chun Hu, Yuchao Tang, Zheng Jiang, et al., Characterization and Photocatalytic Activity of Noble-Metal-Supported Surface TiO2/SiO2, Appl. Catal., A, 2003, vol. 253, pp. 389–396.CrossRefGoogle Scholar
  11. 11.
    Kim, Y.K., Kim, E.Y., Whang, C.M., et al., Microstructure and Photocatalytic Property of SiO2-TiO2 under Various Process Condition, J. Sol-Gel Sci. Technol., 2005, vol. 33, pp. 87–91.CrossRefGoogle Scholar
  12. 12.
    Mrowiec-Bialon, J., Jarzebski, A.B., Kholdeeva, O.A., et al., Properties of the Sol-Gel TiO2-SiO2 Oxidation Catalysts Prepared Using Ethyl Silicate 40 As a Silica Precursor, Appl. Catal., A, 2004, vol. 273, pp. 47–53.CrossRefGoogle Scholar
  13. 13.
    Wilhelm, P., Zetzsch, C., and Stephan, D., Titania Coated Silica Nano-Spheres As Catalyst in the Photo-degradation of Hydrocarbons, Prog. Colloid Polym. Sci., 2006, vol. 133, pp. 147–151.CrossRefGoogle Scholar
  14. 14.
    Stöber, W., Fink, A., and Bohn, E., Controlled Growth of Monodisperse Silica Spheres in the Micron Size Range, J. Colloid Interface Sci., 1968, vol. 26, pp. 62–69.CrossRefGoogle Scholar
  15. 15.
    Asker, E.G. and Winuall, M.E., US Patent 4 049 781, 1977.Google Scholar
  16. 16.
    Pavlova-Verevkina, O.B., Roginskaya, Yu.E., Lopukhova, G.V., and Pertsov, A.V., Investigation of Equilibrium Titania Hydrosols, Kolloidn. Zh., 1996, vol. 58, no. 6, pp. 807–811.Google Scholar
  17. 17.
    Mohamed Mokhtar Mohamed, Salama, T.M., and Yamaguchi, T., Synthesis, Characterization and Catalytic Properties of Titania-Silica Catalysts, Colloids Surf., A, 2002, vol. 207, pp. 25–32.CrossRefGoogle Scholar
  18. 18.
    Xin Jiang, Ting Wang, and You-wen Wang, Preparation of TiO2 Nanoparticles on the Surface of SiO2 in Binary Liquids, Colloids Surf., A, 2004, vol. 234, pp. 9–15.CrossRefGoogle Scholar
  19. 19.
    GOST (State Standard) 2642.6-97: Refractories and Refractory Raw Materials. Titanium(IV) Determination Methods, 1997.Google Scholar
  20. 20.
    Ivashkevich, L.S., Karataeva, T.P., and Lyakhov, A.S., Rentgenovskie metody v khimicheskikh issledovaniyakh (X-Ray Methods in Chemical Studies), Minsk: Belaruss. Gos. Univ., 2001.Google Scholar
  21. 21.
    Frolov, Yu.G., Kurs kolloidnoi khimii. Poverkhnostnye yavleniya i dispersnye sistemy (Course of Colloid Chemistry: Surface Phenomena and Disperse Systems), Moscow: Khimiya, 1988.Google Scholar
  22. 22.
    Murashkevich, A.N. and Lavitskaya, A.S., Bel. Patent Application 1220, 2008.Google Scholar
  23. 23.
    Gregg, S.J. and Sing, K.S.W., Adsorption, Surface Area, and Porosity, London: Academic, 1967.Google Scholar
  24. 24.
    Wallidge, G.W., Anderson, R., Mountjoy, G., et al., Advanced Physical Characterization of the Structural Evolution of Amorphous (TiO2)×(SiO2)[1 − x] Sol-Gel Materials, J. Mater. Sci., 2004, vol. 39, pp. 6743–6755.CrossRefGoogle Scholar
  25. 25.
    Murashkevich, A.N. and Lavitskaya, A.S., Fabrication and Properties of a Composite Based on Titania and Silica, Vestsi Akad. Navuk Belarusi, Ser. Khim. Navuk, 2007, no. 2, pp. 5–11.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • A. N. Murashkevich
    • 1
  • A. S. Lavitskaya
    • 1
  • O. A. Alisienok
    • 1
  • I. M. Zharskii
    • 1
  1. 1.Belarussian State Technological UniversityMinskBelarus

Personalised recommendations