Advertisement

Inorganic Materials

, Volume 45, Issue 1, pp 90–98 | Cite as

Conductivity of the nanostructured ceramic material Zr0.88Sc0.1Ce0.01Y0.01O1.955 prepared from mechanically activated powders

  • V. V. Zyryanov
  • N. F. Uvarov
  • A. S. Ulikhin
  • V. G. Kostrovskii
  • B. B. Bokhonov
  • V. P. Ivanov
  • V. A. Sadykov
  • A. T. Titov
  • K. S. Paichadze
Article

Abstract

The structure of the Zr0.88 Sc0.1Ce0.01Y0.01O1.955 solid solution, a candidate for the use as a solid electrolyte in fuel cells with a low temperature, has been investigated using x-ray powder diffraction and Raman spectroscopy. Single-phase ceramic materials have been produced from powders prepared by the mechanochemical synthesis from ZrO2 nanoprecursors purified of the impurities introduced during grinding of commercial zirconia. The solid solution has a rhombohedral structure at room temperature owing to the partial ordering of oxygen vacancies. The electrical conductivity of the ceramic materials sintered at temperatures below 1570 K exhibits a hysteresis due to the delay of the martensitic transition from the cubic phase to the rhombohedral phase upon cooling of the sample. The nanostructured ceramic materials are characterized by a high mechanical strength and unusually close values of the activation energies for bulk and grain-boundary electrical conduction.

Keywords

Zirconia Ceramic Material Solid State Ionic Mechanochemical Synthesis Martensitic Transition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Strickler, D.W. and Karlson, W.G., Electrical Conductivity in the ZrO2-Rich Region of Several M2O3-ZrO2 Systems, J. Am. Ceram. Soc., 1965, vol. 48, no. 6, pp. 286–289.CrossRefGoogle Scholar
  2. 2.
    Spiridonov, F.M., Popova, L.N., and Popil’skii, R.Ya., On the Phase Relations and the Electrical Conductivity in the System ZrO2-Sc2O3, J. Solid State Chem., 1970, vol. 2, no. 3, pp. 430–438.CrossRefGoogle Scholar
  3. 3.
    Kosacki, I., Anderson, H.U., Mizutani, Y., and Ukai, K., Nonstoichiometry and Electrical Transport in Sc-Doped Zirconia, Solid State Ionics, 2002, vols. 152–153, pp. 431–438.CrossRefGoogle Scholar
  4. 4.
    Haering, C., Roosen, A., Schichle, H., and Schnüller, M., Degradation of the Electrical Conductivity in [!]Stabilized Zirconia System[!]: Part II[!]. [!]Scandia-Stabilized Zirconia, Solid State Ionics, 2005, vol. 176, pp. 261–268.CrossRefGoogle Scholar
  5. 5.
    Lei, Z. and Zhu, Q., [!]Low-Temperature Processing of Dense Nanocrystalline Scandia-Doped Zirconia (ScSZ) Ceramics, Solid State Ionics, 2005, vol. 176, nos. 37–38, pp. 2791–2797.CrossRefGoogle Scholar
  6. 6.
    Sakuma, T. and Suto, H., The Cubic-to-β Martensitic Transformation in ZrO2-Sc2O3, J. Mater. Sci., 1986, vol. 21, no. 12, pp. 4359–4365.CrossRefGoogle Scholar
  7. 7.
    Wang, Z., Cheng, M., Bi, Z., et al., Structure and Impedance of ZrO2 Doped with Sc2O3 and CeO2, Mater. Lett., 2005, vol. 59, nos. 19–20, pp. 2579–2582.CrossRefGoogle Scholar
  8. 8.
    Fujimori, H., Yashima, M., Kakihana, M., and Yoshimura, M., [!]Structural Changes of Scandia-Doped Zirconia Solid Solutions: Rietveld Analysis and Raman Scattering, J. Am. Ceram. Soc., 1998, vol. 81, no. 11, pp. 2885–2893.CrossRefGoogle Scholar
  9. 9.
    Badwal, S.P.S. and Drennan, J., Microstructure/Conductivity Relationship in the Scandia-Zirconia System, Solid State Ionics, 1992, vols. 53–56, no. 2, pp. 769–776.CrossRefGoogle Scholar
  10. 10.
    Lee, D.S., Kim, W.S., Choi, S.H., et al., Characterization of ZrO2 Co-Doped with Sc2O3 and CeO2 Electrolyte for the Application of Intermediate Temperature SOFCs, Solid State Ionics, 2005, vol. 176, pp. 33–39.CrossRefGoogle Scholar
  11. 11.
    Sarat, S., Sammes, N., and Smirnova, A., Bismuth Oxide Doped Scandia-Stabilized Zirconia Electrolyte for the Intermediate Temperature Solid Oxide Fuel Cells, J. Power Sources, 2006, vol. 160, pp. 892–896.CrossRefGoogle Scholar
  12. 12.
    Politova, T.I. and Irvine, J.T.S., Investigation of Scandia-Yttria-Zirconia System as An Electrolyte Material for Intermediate Temperature Fuel Cells-Influence of Yttria Content in System (Y2O3)x(Sc2O3)(11−x)(ZrO2)89, Solid State Ionics, 2006, vol. 168, pp. 153–165.CrossRefGoogle Scholar
  13. 13.
    Smirnova, A., Sadykov, V., [!] Muzykantov, V., et al., Scandia-Stabilized Zirconia: Effect of Dopants on Surface/Grain Boundary Segregation and Transport Properties, Mater. Res. Soc. Symp. Proc., 2007, vol. 972, p. 0972-AA10–05.Google Scholar
  14. 14.
    Zevalkink, A., Hunter, A., Swanson, M., et al., Processing and Characterization of Sc2O3-CeO2-ZrO2 Electrolyte Based Intermediate Temperature Solid Oxide Fuel Cells, Mater. Res. Soc. Symp. Proc., 2007, vol. 972, p. 0972-AA03–04.Google Scholar
  15. 15.
    Zyryanov, V.V., Uvarov, N.F., and Sadykov, V.A., Mechanochemical Synthesis of Solid Solutions Based on ZrO2 and Their Electrical Conductivity, Fiz. Khim. Stekla, 2007, vol. 33, no. 4, pp. [!]546–555 [Glass Phys. Chem. (Engl. transl.), 2007, vol. 33, no. 4, pp. [394–401].Google Scholar
  16. 16.
    Kosacki, I., Rouleau, C.M., Becher, P.F., et al., Nanoscale Effects on the Ionic Conductivity in Highly Textured YSZ Thin Films, Solid State Ionics, 2005, vol. 176, pp. 1319–1326.CrossRefGoogle Scholar
  17. 17.
    Appel, C.C. and Bonanos, N., Structural and Electrical Characterization of Silica-Containing Yttria-Stabilized Zirconia, J. Eur. Ceram. Soc., 1999, vol. 19, p. 847.CrossRefGoogle Scholar
  18. 18.
    Mondal, P., Klein, A., Jaegermann, W., and Hahn, H., Enhanced Specific Grain Boundary Conductivity in Nanocrystalline Y2O3-Stabilized Zirconia, Solid State Ionics, 1999, vol. 118, nos. 3–4, pp. 331–339.CrossRefGoogle Scholar
  19. 19.
    Zyryanov, V.V. and Kostrovskii, V.G., Polymorphism of ZrO2 Nanopowders and Mechanochemical Synthesis of Zr0.88Sc0.1Ce0.01Y0.01O1.955, Neorg. Mater., 2008, vol. 44, no. 11 (in press) [Inorg. Mater. (Engl. transl.), 2008, vol. 44, no. 11 (in press)].Google Scholar
  20. 20.
    Zyryanov, V.V., A Method for the Preparation of Grinding Bodies Prior to Milling of a Dielectric Material in a Tumbling Mill, USSR Inventor’s Certificate no. 1536 573, 1989.Google Scholar
  21. 21.
    Zyryanov, V.V., Ultrafast Mechanochemical Synthesis of Mixed Oxides, Neorg. Mater., 2005, vol. 41, no. 4, pp. 450–464 [Inorg. Mater. (Engl. transl.), 2005, vol. 41, no. 4, pp. 378–392].CrossRefGoogle Scholar
  22. 22.
    Zyryanov, V.V. and Paichadze, K.S., Mechanochemical Synthesis and Sintering of Complex Perovskites and Layer Perovskites for Membrane Applications, in Abstracts of the Asian Symposium Advanced Materials (ASAM), Vladivostok, Russia, 2007, Vladivostok, 2007, p. 114.Google Scholar
  23. 23.
    Nemudry, A. and Uvarov, N., Nanostructuring in Composites and Grossly Nonstoichiometric or Heavily Doped Oxides, Solid State Ionics, 2006, vol. 177, pp. 2491–2494.CrossRefGoogle Scholar
  24. 24.
    Zhogin, I.L., Nemudry, A.P., Glyanenko, P.V., et al., Oxygen Diffusion in Nanostructured Perovskites, Catal. Today, 2006, vol. 118, pp. 151–157.CrossRefGoogle Scholar
  25. 25.
    Isupova, L.A., Tsybulya, S.V., Kryukova, G.N., et al., Real Structure and Catalytic Activity of La1−xCaxMnO3+δ Perovskites, Solid State Ionics, 2001, vols. 141–142, pp. 417–425.CrossRefGoogle Scholar
  26. 26.
    Zyryanov, V.V., Uvarov, N.F., Kostrovskii, V.G., et al., Design of New Oxide Ceramic Materials and Nanocomposites with Mixed Conductivity by Using Mechanical Activation Route, Mater. Res. Soc. Symp. Proc., 2003, vol. 755, p. DD.6.27.1–6.Google Scholar

Copyright information

© MAIK Nauka 2009

Authors and Affiliations

  • V. V. Zyryanov
    • 1
  • N. F. Uvarov
    • 1
  • A. S. Ulikhin
    • 1
  • V. G. Kostrovskii
    • 1
  • B. B. Bokhonov
    • 1
  • V. P. Ivanov
    • 2
  • V. A. Sadykov
    • 2
  • A. T. Titov
    • 3
  • K. S. Paichadze
    • 1
  1. 1.Institute of Solid-State Chemistry and Mechanochemistry, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Boreskov Institute of Catalysis, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  3. 3.Trofimuk United Institute of Geology, Geophysics, and Mineralogy, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations