Inorganic Materials

, Volume 44, Issue 10, pp 1115–1120 | Cite as

Electric-field effect on crystal growth in the Li3PO4-Li4GeO4-Li2MoO4-LiF system

  • D. A. Ksenofontov
  • L. N. Dem’yanets
  • A. K. Ivanov-Schitz
Article

Abstract

We have studied the electric-field effect on crystallization processes in the Li3PO4-Li4GeO4-Li2MoO4-LiF system. In zero field, Li3+xP1−xGexO4 (x = 0.31) crystals were grown on the cathode under the conditions of this study. At low applied voltages (≤ 0.5 V), we obtained Li2MoO4, Li2GeO3, and Li1.3Mo3O8. In the range V = 0.5–1 V, crystals of Li3+xP1−xGexO4 solid solutions with x = 0.17, 0.25, 0.28, 0.29, and 0.36 were obtained. An applied electric field was shown to reduce the melting temperature of the starting mixtures and the crystallization onset temperature.

References

  1. 1.
    Walsh, F.C. and Herron, M.E., Electrocrystallization and Electrochemical Control of Crystal Growth: Fundamental Considerations and Electrodeposition of Metals, J. Phys. D: Appl. Phys., 1991, vol. 24, pp. 217–225.CrossRefGoogle Scholar
  2. 2.
    Budevski, E., Staikov, G., and Lorenz, W.J., Electrocrystallization, Nucleation, and Growth Phenomena, Electrochim. Acta, 2000, vol. 45, pp. 2559–2574.CrossRefGoogle Scholar
  3. 3.
    Aigner, M.-L., Ritter, F., and Assmus, W., Influence of Electric Current on Crystallization of YBa2Cu3O7−x in BaO/CuO/CuO0.5 Flux Melts, J. Low Temp. Phys., 1999, vol. 117, nos. 3–4, pp. 699–703.CrossRefGoogle Scholar
  4. 4.
    Belyaev, A.P. and Rubets, V.P., Influence of External Conditions on Crystallization Mechanisms in Eutectic Sn-Pb Melts, Fiz. Tverd. Tela (S.-Peterburg), 2005, vol. 47, no. 2, pp. 193–195.Google Scholar
  5. 5.
    Zhang, L., Zhao, L.Z., Dong, C., et al., Anodic Electrocrystallization of Gd1−xNaxCu2O4 and Nd1−yNayCu2O4 Crystals from Molten Salts, Solid State Commun., 2000, vol. 113, pp. 349–352.CrossRefGoogle Scholar
  6. 6.
    Ivanov-Schits, A.K. and Murin, I.V., Ionika tverdogo tela (Solid-State Ionics), St. Petersburg: S.-Peterburg. Univ., 2000, vol. 1.Google Scholar
  7. 7.
    Ibarra-Ramirez, C., Villafuerte-Castrejon, M.E., and West, A.R., Continuous, Martensitic Nature of the Transition β → γ-Li3PO4, J. Mater. Sci., 1985, vol. 20, pp. 812–816.CrossRefGoogle Scholar
  8. 8.
    Reculeau, E., Elfakir, A., and Quarton, M., Characterisation et prevision d’une nouvelle variete de Li3PO4. J. Solid State Chem., 1989, vol. 79, pp. 205–211.CrossRefGoogle Scholar
  9. 9.
    Ivanov-Shits, A.K. and Kireev, V.V., Crystal Growth and Ionic Conductivity of Li3+xP1−xGexO4 (x = 0.34), Kristallografiya, 2002, vol. 48, no. 1, pp. 117–120.Google Scholar
  10. 10.
    Rabadanov, M.Kh., Petrashko, A., Kireev, V.V., et al., Atomic Structure and Mechanism of Ionic Conductivity in Li3.31Ge0.31P0.69O4 Single Crystals, Kristallografiya, 2003, vol. 48, no. 4, pp. 640–645.Google Scholar
  11. 11.
    Dem’yanets, L.N., Ivanov-Shitz, A.K., Kireev, V.V., and Ksenofontov, D.A., Electric-Field Effect on Crystallization in the Li3PO4-Li4GeO4-Li2MoO4-LiF System, Neorg. Mater., 2004, vol. 40, no. 8, pp. 1001–1005 [Inorg. Mater. (Engl. Transl.), vol. 40, no. 8, pp. 874–877].Google Scholar
  12. 12.
    Ksenofontov, D.A., Zubkova, N.V., Pushcharovskii, D.Yu., et al., Synthesis and Crystal Structure of Li3.17(P0.69Ge0.24Mo0.07)O4, Kristallografiya, 2006, vol. 51, no. 3, pp. 425–428.Google Scholar

Copyright information

© MAIK Nauka 2008

Authors and Affiliations

  • D. A. Ksenofontov
    • 1
  • L. N. Dem’yanets
    • 1
  • A. K. Ivanov-Schitz
    • 1
  1. 1.Shubnikov Institute of CrystallographyRussian Academy of SciencesMoscowRussia

Personalised recommendations