Inorganic Materials

, Volume 43, Issue 9, pp 988–993

Microwave-assisted hydrothermal synthesis of fine BaZrO3 and BaHfO3 powders

  • V. D. Maksimov
  • P. E. Meskin
  • B. R. Churagulov
Article

Abstract

Fine BaZrO3 and BaHfO3 powders have been prepared by a microwave-assisted hydrothermal (MWHT) process. The powders have been characterized by x-ray diffraction and scanning electron microscopy, and their particle size distribution has been assessed from dynamic light scattering data. The results indicate that microwave processing during hydrothermal synthesis notably reduces the average particle size of the resulting powder and ensures a narrower particle size distribution. BaHfO3 particles prepared under the optimal MWHT synthesis conditions are predominantly spherical in shape and uniform in size, with an average size (1.2 μm) a factor of 2.5 smaller in comparison with particles prepared by a conventional hydrothermal process (2.9 μm).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zhang, J.L. and Evetts, J.E., BaZrO3 and BaHfO3: Preparation, Properties, and Compatibility with YBa2Cu3O7−x, J. Mater. Sci., 1994, vol. 29, no. 3, pp. 778–785.CrossRefGoogle Scholar
  2. 2.
    Erb, A., Walker, E., and Flükiger, R., The Use of BaZrO3 Crucibles in Crystal Growth of the High-Tc Superconductors: Progress in Crystal Growth As Well As in Sample Quality, Phys. C (Amsterdam, Neth.), 1996, vol. 258, pp. 9–20.CrossRefGoogle Scholar
  3. 3.
    Liang, R., Bonn, D.A., and Hardy, W.N., Growth of High Quality YBCO Single Crystals Using BaZrO3 Crucibles, Phys. C (Amsterdam, Neth.), 1998, vol. 304, pp. 105–111.CrossRefGoogle Scholar
  4. 4.
    Byrappa, K. and Yoshimura, M., Handbook of Hydrothermal Technology, New York: William Andrew, 2001.Google Scholar
  5. 5.
    Kolen’ko, Yu.V., Burukhin, A.A., Churagulov, B.R., et al., Hydrothermal Synthesis of Different Nanocyrstalline ZrO2 and TiO2 Polymorphs, Zh. Neorg. Khim., 2002, vol. 47, no. 11, pp. 1755–1762.Google Scholar
  6. 6.
    Cheng, H.-M., Wu, L.-J., Ma, J.-M., et al., The Effects of pH and Alkaline Earth Ions on the Formation of Nanosized Zirconia Phases under Hydrothermal Conditions, J. Eur. Ceram. Soc., 1999, vol. 19, no. 8, pp. 1675–1681.CrossRefGoogle Scholar
  7. 7.
    Burukhin, A.A., Churagulov, B.R., Oleinikov, N.N., et al., Synthesis of Nanocrystalline Ferrite Powders in Hydrothermal and Supercritical Solutions, Zh. Neorg. Khim., 2001, vol. 46, no. 5, pp. 735–741.Google Scholar
  8. 8.
    Katsuki, H. and Komarneni, S., Microwave-Hydrothermal Synthesis of Monodispersed Nanophase α-Fe2O3, J. Am. Ceram. Soc., 2001, vol. 84, no. 10, pp. 2313–2317.CrossRefGoogle Scholar
  9. 9.
    Komarneni, S., Roy, R., and Li, Q., Microwave-Hydrothermal Synthesis of Ceramic Powders, Mater. Res. Bull., 1992, vol. 27, no. 12, pp. 1393–1405.CrossRefGoogle Scholar
  10. 10.
    Komarneni, S., Li, Q., Steffansson, K.M., and Roy, R., Microwave-Hydrothermal Processing for Synthesis of Electroceramic Powders, J. Mater. Res., 1993, vol. 8, no. 12, pp. 3176–3183.CrossRefGoogle Scholar
  11. 11.
    Liu, F., Abothu, I.R., and Komarneni, S., Barium Titanate Ceramics Prepared from Conventional and Microwave Hydrothermal Powders, Mater. Lett., 1999, vol. 38, pp. 344–350.CrossRefGoogle Scholar
  12. 12.
    Komarneni, S., D’Arrigo, M.C., Leonelli, C., et al., Microwave-Hydrothermal Synthesis of Nanophase Ferrites, J. Am. Ceram. Soc., 1998, vol. 81, no. 11, pp. 3041–3043.CrossRefGoogle Scholar
  13. 13.
    Komarneni, S., Menon, V.C., Li, Q.H., et al., Microwave-Hydrothermal Processing of BiFeO3 and CsAl2PO6, J. Am. Ceram. Soc., 1996, vol. 79, no. 5, pp. 1409–1412.CrossRefGoogle Scholar
  14. 14.
    Kumada, N., Kinomura, N., and Komarneni, S., Microwave-Hydrothermal Synthesis of ABi2O6 (A = Mg, Zn), Mater. Res. Bull., 1998, vol. 9, pp. 1411–1414.CrossRefGoogle Scholar
  15. 15.
    Vivekanandan, R., Philip, S., and Kutty, T.R.N., Hydrothermal Preparation of Ba(Ti,Zr)O3 Fine Powders, Mater. Res. Bull., 1987, vol. 22, no. 1, pp. 99–108.CrossRefGoogle Scholar
  16. 16.
    Zheng, W., Liu, C., Yue, Y., and Pang, W., Hydrothermal Synthesis and Characterization of BaZr1−xMxO3−a (M = Al, Ga, In, x ≤ 0.20) Series Oxides, Mater. Lett., 1997, vol. 30, no. 1, pp. 93–97.CrossRefGoogle Scholar
  17. 17.
    Phule, P.P. and Grundy, D.C., Pathways for the Low Temperature Synthesis of Nano-sized Crystalline Barium Zirconate, Mater. Sci. Eng., B, 1994, vol. 23, pp. 29–35.CrossRefGoogle Scholar
  18. 18.
    Kolen’ko, Yu.V., Burukhin, A.A., Churagulov, B.R., et al., On the Possibility of Preparing Fine-Particle Barium Zirconate by Hydrothermal Synthesis, Neorg. Mater., 2002, vol. 38, no. 3, pp. 320–324 [Inorg. Mater. (Engl. Transl.), vol. 38, no. 3, pp. 252–255].Google Scholar
  19. 19.
    Dias, A. and Ciminelli, V.S.T., Electroceramic Materials of Tailored Phase and Morphology by Hydrothermal Technology, Chem. Mater., 2003, vol. 15, no. 6, pp. 1344–1352.CrossRefGoogle Scholar
  20. 20.
    Kolen’ko, Yu.V., Meskin, P.E., Mukhanov, V.A., et al., Effect of the Nature of the Cation on the Phase Composition of Nanocrystalline Titania-like Dioxides Prepared by Hydrothermal Processing of Amorphous Hydroxide Gels, Zh. Neorg. Khim., 2005, vol. 50, no. 12, pp. 1941–1946.Google Scholar
  21. 21.
    Vukalovich, M.P. and Rivkin, S.L., Teplofizicheskie svoistva vody i vodyanogo para (Thermophysical Properties of Water and Water Vapor), Moscow: Energiya, 1971.Google Scholar
  22. 22.
    Microwave-Enhanced Chemistry, Kingston, H.M. and Haswell, S.J., Eds., Washington, DC: American Chemical Society, 1997.Google Scholar
  23. 23.
    Bondioli, F., Ferrari, A.M., Leonelli, C., et al., Microwave-Hydrothermal Synthesis of Nanocrystalline Zirconia Powders, J. Am. Ceram. Soc., 2001, vol. 84, no. 11, pp. 2728–2730.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2007

Authors and Affiliations

  • V. D. Maksimov
    • 1
  • P. E. Meskin
    • 1
    • 2
  • B. R. Churagulov
    • 1
  1. 1.Moscow State UniversityMoscowRussia
  2. 2.Kurnakov Institute of General and Inorganic ChemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations