Inorganic Materials

, Volume 43, Issue 7, pp 729–734 | Cite as

Micro-pulling-down: A viable approach to the crystal growth of refractory rare-earth sesquioxides

  • A. Novoselov
  • J. H. Mun
  • R. Simura
  • A. Yoshikawa
  • T. Fukuda


The RE2O3 (RE = Y, Lu, Sc) sesquioxides are promising host materials for solid-state lasers owing to their low phonon energy and high thermal conductivity. Our results demonstrate that the micro-pulling-down method is a viable approach to the single-crystal growth of refractory rare-earth sesquioxides with melting points over 2400°C. The method yields chemically homogeneous single-crystal rods of high crystallinity. We also present thermal conductivity data for Yb-doped Y2O3 and Lu2O3 and for Tm-doped Y2O3.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Koecher, W., Solid-State Laser Engineering, Berlin: Springer, 1999.Google Scholar
  2. 2.
    Bogomolova, G.A., Vylegzhanin, D.N., and Kaminskii, A.A., Spectral and Lasing Investigations of Garnets with Yb3+ Ions, J. Exp. Theor. Phys., 1976, vol. 42, no. 3, pp. 440–446.Google Scholar
  3. 3.
    DeLoach, L.D., Payne, S.A., Chase, L.L., et al., Evaluation of Absorption and Emission Properties of Yb3+ Doped Crystals for Laser Applications, IEEE J. Quantum Electron., 1993, vol. 29, no. 4, pp. 1179–1191.CrossRefGoogle Scholar
  4. 4.
    Baney, D.M., Rankin, G., and Chang, K.W., Simultaneous Blue and Green Upconversion Lasing in a Laser-Diode-Pumped Pr3+/Yb3+ Doped Fluoride Fiber Laser, Appl. Phys. Lett., 1996, vol. 69, no. 12, pp. 1662–1664.CrossRefGoogle Scholar
  5. 5.
    Sumida, D.S. and Fan, T.Y., Effect of Radiation Trapping on Fluorescence Lifetime and Emission Cross Section Measurements in Solid-State Laser Media, Opt. Lett., 1994, vol. 19, no. 17, pp. 1343–1345.CrossRefGoogle Scholar
  6. 6.
    Peters, V., Bolz, A., Petermann, K., and Huber, G., Growth of High-Melting Sesquioxides by the Heat Exchange Method, J. Cryst. Growth, 2002, vols. 237–239, pp. 879–883.CrossRefGoogle Scholar
  7. 7.
    Pauling, L. and Shappel, M.D., The Crystal Structure of Bixbyite and the C-Modification of the Sesquioxides, Z. Kristallogr., 1930, vol. 75, nos. 1–2, pp. 128–142.Google Scholar
  8. 8.
    Hanic, F., Hartmanova, M., Knab, G.G., et al., Real Structure of Undoped Y2O3 Single Crystals, Acta Crystallogr., Sect. B: Struct. Sci., 1984, vol. 40, pp. 76–82.CrossRefGoogle Scholar
  9. 9.
    Shevchenko, A.V. and Lopato, L.M., TA Method Application to the Highest Refractory Oxide Systems Investigation, Thermochim. Acta, 1985, vol. 93, pp. 537–540.CrossRefGoogle Scholar
  10. 10.
    Chang, N.C., Fluorescence and Stimulated Emission from Trivalent Europium in Yttrium Oxide, J. Appl. Phys., 1963, vol. 34, no. 12, pp. 3500–3504.CrossRefGoogle Scholar
  11. 11.
    Fornasiero, L., Mix, E., Peters, V., et al., New Oxide Crystals for Solid State Lasers, Cryst. Res. Technol., 1999, vol. 34, no. 2, pp. 255–260.CrossRefGoogle Scholar
  12. 12.
    Petermann, K., Fornasiero, L., Mix, E., and Peters, V., High-Melting Sesquioxides: Crystal Growth, Spectroscopy, and Laser Experiments, Opt. Mater., 2002, vol. 19, pp. 67–71.CrossRefGoogle Scholar
  13. 13.
    Stone, J. and Burrus, C.A., Nd:Y2O3 Single-Crystal Fiber Laser: Room-Temperature cw Operation at 1.07-and 1.35-μm Wavelength, J. Appl. Phys., 1978, vol. 49, no. 4, pp. 2281–2287.CrossRefGoogle Scholar
  14. 14.
    Fejer, M.M., Nightingale, J.L., Magel, G.A., and Byer, R.L., Laser-Heated Miniature Pedestal Growth Apparatus for Single-Crystal Optical Fibers, Rev. Sci. Instrum., 1984, vol. 55, no. 11, pp. 1791–1796.CrossRefGoogle Scholar
  15. 15.
    Belousenko, A.P., Zatulovskii, L.M., Kravetskii, D.Ya., et al., Growth and Properties of Scandium Oxide Shaped Crystals, Proc. 9th Conf. on the Production of the Shaped Crystals and Products by the Stepanov Method and Their Use in National Economy, Leningrad, 1982, pp. 276–278.Google Scholar
  16. 16.
    Kong, J., Lu, J., Takaichi, K., et al., Diode-Pumped Yb:Y2O3 Ceramic Laser, Appl. Phys. Lett., 2003, vol. 82, no. 16, pp. 2556–2558.CrossRefGoogle Scholar
  17. 17.
    Novoselov, A., Yoshikawa, A., and Fukuda, T., The Micro-Pulling-Down Method: Fast and Economic Solution for Materials Screening, Curr. Top. Cryst. Growth Res., 2004, vol. 7, pp. 87–111.Google Scholar
  18. 18.
    Shibata, H., Ohta, H., Suzuki, A., and Waseda, Y., Applicability of Platinum and Molybdenum Coatings for Measuring Thermal Diffusivity of Transparent Glass Specimens by the Laser Flash Method at High Temperatures, Mater. Trans. JIM, 2000, vol. 41, no. 12, pp. 1616–1620.Google Scholar
  19. 19.
    Nishi, T., Shibata, H., Ohta, H., et al., Specific Heat Measurements of Pd-Based Alloy in the Liquid State by the Heat-Flux Type DSC with Triple Cells, Nippon Kinzoku Gakkaishi, 2004, vol. 68, no. 8, pp. 499–502.Google Scholar
  20. 20.
    Frukacz, Z. and Pawlak, D.A., Encyclopedia of Materials: Science and Technology, Buschow, K.H.J., et al., Eds., Amsterdam: Elsevier, 2001, pp. 3455–3463.Google Scholar
  21. 21.
    Lopato, L.M., Shevchenko, A.V., Kushchevskii, A.E., and Tresvyatskii, S.G., Polymorphic Transitions of Rare Earth Oxides at High Temperatures, Inorg. Mater., 1974, vol. 10, no. 8, pp. 1276–1281.Google Scholar
  22. 22.
    Tissue, B.M., Lizhu Lu, Li Ma, et al., Laser-Heated Pedestal Growth of Laser and IR-Upconverting Materials, J. Cryst. Growth, 1990, vol. 109, pp. 323–328.Google Scholar
  23. 23.
    Adachi, G. and Imanaka, N., The Binary Rare Earth Oxides, Chem. Rev., 1998, vol. 98, pp. 1479–1514.CrossRefGoogle Scholar
  24. 24.
    Pawlak, D.A., Lerondel, G., Dmytruk, I., et al., Second Order Self-organized Pattern of Terbium-Scandium-Aluminum Garnet and Terbium-Scandium Perovskite Eutectic, J. Appl. Phys., 2002, vol. 91, no. 12, pp. 9731–9736.CrossRefGoogle Scholar
  25. 25.
    Honea, E.C., Beach, R.J., Sutton, S.B., et al., 115-W Tm:Diode-Pumped Solid State Laser, IEEE J. Quantum Electron., 1997, vol. 33, no. 9, pp. 1592–1600.CrossRefGoogle Scholar
  26. 26.
    Klein, P.H. and Croft, W.J., Thermal Conductivity, Diffusivity, and Expansion of Y2O3, Y3Al5O12, and LaF3 in the Range 77–300 K, J. Appl. Phys., 1967, vol. 38, no. 4, pp. 1603–1607.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2007

Authors and Affiliations

  • A. Novoselov
    • 1
  • J. H. Mun
    • 1
  • R. Simura
    • 1
  • A. Yoshikawa
    • 1
  • T. Fukuda
    • 1
  1. 1.Institute of Multidisciplinary Research for Advanced MaterialsTohoku UniversitySendaiJapan

Personalised recommendations