Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Spectroscopic Studies of Longitudinal Discharges in a Supersonic Air Flow during the Injection of Propane, Ethylene, and Oxygen into the Discharge Zone

  • 5 Accesses


The paper presents the results of studies of longitudinal electric discharges in a supersonic air flow with a Mach number of M = 2 in the range of static pressures (2.94−4.9) × 104 Pa (∼220−367 Torr) and discharge currents of ∼1.5−1.8 A during the injection of propane, ethylene, and hydrogen, along with oxygen, into the discharge zone through the two types of upstream electrodes (anodes). The design of the electric-discharge modules was such that the discharge was carried downstream by the supersonic flow and closed, mainly to the cathode located downstream. Emission spectroscopy was used to obtain data on the composition of the emitting products that arose in the processes of converting a fuel-air mixture in a discharge and their spatial distribution. In particular, data on the distribution of the radiation intensity of CN, C2 molecules, and OH radical, as well as atomic hydrogen and oxygen in a number of sections of the discharge channel, are presented. The used methodology allowed us to determine the change in the transverse dimensions of the discharge channels along the length and the value of the rotational temperature of molecule C2 for discharges with the injection of propane and ethylene into the discharge zone. The relationship between its value and the conditions for the formation of the discharge and the coefficient of excess oxygen injected into the discharge is established.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.


  1. 1

    Kimura, I., Aoki, H., and Kato, M., Combust. Flame, 1981, vol. 42, p. 297.

  2. 2

    Takita, K., Uemoto, T., Sato, T., et al., J. Propul. Power, 2000, vol. 16, no. 2, p. 227.

  3. 3

    Sato, Y., Sayama, M., Katsura, O., et al., J. Propul. Power, 1992, vol. 8, no. 4, p. 883.

  4. 4

    Wagner, T.C., O’Brien, W.F., Norhman, G.B., and Eggers, J.M., J. Propul. Power, 1989, vol. 5, no. 5, p. 548.

  5. 5

    Jacobson, L.S., Gallimore, S.D., Schetz, J.A., and O’Brien, W.F., J. Propul. Power, 2003, vol. 19, no. 2, p. 170.

  6. 6

    Gallimore, S.D., Jacobson, L.S., O’Brien, W.F., and Schetz, J.A., J. Propul. Power, 2003, vol. 19, no. 2, p. 183.

  7. 7

    Shibkov, V.M., Alexandrov, A.F., Chernikov, A.V., et al., Freely localized microwave discharge in supersonic flow, AIAA Pap. no. 2001-2946, 2001.

  8. 8

    Esakov, I.I., Grachev, L.P., and Khodataev, K.V., Investigation of the under-critical microwave streamer discharge for jet engine fuel ignition, AIAA Pap. no. 2001-2939, 2001.

  9. 9

    Klimov, A., Bityirin, V., Brovkin, V., et al., Optimization of plasma generators for plasma assisted combustion, AIAA Pap. no. 2001-2874, 2001.

  10. 10

    Chernikov, V., Ershov, A., Shibkov, V., et al., Gas discharges in supersonic flows of air–propane mixtures, AIAA Pap. no. 2001-2948, 2001.

  11. 11

    Leonov, S., Bituirin, V., Savelkin, K., and Yarantsev, D., Abstracts of Papers, 4th Workshop on Magnetoplasma Aerodynamics for Aerospace Applications, Moscow, 2002, p. 56.

  12. 12

    Anikin, N., Pancheshnyi, S., Starikovskaia, S., and Starikovskii, A., Air plasma production by high-voltage nanosecond gas discharge, AIAA Pap. no. 2001-3088, 2001.

  13. 13

    Zhivotov, V.K., Rusanov, V.D., and Fridman, A.A., Diagnostika neravnovesnoi khimicheski aktivnoi plazmy (Diagnostics of Nonequilibrium Chemically Active Plasma), Moscow: Energoatomizdat, 1985.

  14. 14

    Raizer, Yu.P., Fizika gazovogo razryada (Gas Discharge Physics), Moscow: Nauka, 1987.

  15. 15

    Kondrat’ev, V.N. and Nikitin, E.E., Kinetika i mekhanizm gazofaznykh reaktsii (Kinetics and Mechanism of Gas-Phase Reactions), Moscow: Nauka, 1974.

  16. 16

    Vitkovskii, V.V., Grachev, L.P., Gritsov, N.N., et al., Teplofiz.Vys. Temp., 1990, vol. 28, no. 6, p. 1156.

  17. 17

    Skvortsov, V.V., Aerodinamicheskie issledovaniya pri uchastii potokov sintezirovannoi i nizkotemperaturnoi plazmy (Aerodynamic Studies with the Participation of Synthesized and Low-Temperature Plasma Flows), Moscow: Fizmatlit, 2013.

  18. 18

    Ivanov, V.V., Skvortsov, V.V., Efimov, B.G., Pyndyk, A.M., Kireev, A.Yu., Krasheninnikov, V.N., and Shilenkov, S.V., High Temp., 2008, vol. 46, no. 1, p. 3.

  19. 19

    Efimov, B.G., Ivanov, V.V., Inshakov, S.I., Skvortsov, V.V., and Starodubtsev, M.A., High Temp., 2011, vol. 49, no. 4, p. 479.

  20. 20

    Alatortsev, V.K., Inshakov, S.I., Inshakov, I.S., Rozhkov, A.F., Skvortsov, V.V., Urusov, A.Yu., and Uspenskii, A.A., Uch. Zap.TsAGI, 2017, vol. 48, no. 6, p. 41.

  21. 21

    Alatortsev, V.K., Inshakov, S.I., Inshakov, I.S., Rozhkov, A.F., Skvortsov, V.V., Urusov, A.Yu., and Uspenskii, A.A., Uch. Zap.TsAGI, 2018, vol. 49, no. 6, p. 36.

  22. 22

    Cicala, G., De Tommaso, E., Rainò, A.C., Lebedev, Yu.A., and Shakhatov, V.A., Plasma Sources Sci. Technol., 2009, vol. 18, p. 025032.

  23. 23

    Shakhatov, V.A. and Lebedev, Yu.A., High Temp., 2012, vol. 50, no. 5, p. 658.

  24. 24

    Shakhatov, V.A., Mavlyudov, T.B., and Lebedev, Yu.A., High Temp., 2013, vol. 51, no. 4, p. 551.

  25. 25

    Lebedev, Yu.A., Epstein, I.L., Shakhatov, V.A., Yusupova, E.V., and Konstantinov, V.S., High Temp., 2014, vol. 52, p. 319.

  26. 26

    Mizeraczyk, J., Hrycak, B., Jasiński, M., and Dors, M., Int. J. Plasma Environ. Sci. Technol., 2012, vol. 6, no. 3, p. 239.

  27. 27

    Nasser, H., J. Phys.: Conf. Ser., 2014, vol. 511, 012066.

  28. 28

    Passaro, A., Carinhana, D., Jr., Gonçalves, E.A., Moreira da Silva, M., Lasmar Guimãraes, A.P., Abe, N.M., and Moreiro dos Santos, S.J., J. Aerosp. Technol. Manage, 2011, vol. 3, no. 1, p. 13.

  29. 29

    Ochkin, V.N., Spektroskopiya nizkotemperaturnoi plazmy (Spectroscopy of Low-Temperature Plasma), Moscow: Fizmatlit, 2006.

Download references


This work was supported by the Advanced Research Program of the Central Aerohydrodynamic Institute.

Author information

Correspondence to S. I. Inshakov.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Inshakov, S.I., Skvortsov, V.V., Rozhkov, A.F. et al. Spectroscopic Studies of Longitudinal Discharges in a Supersonic Air Flow during the Injection of Propane, Ethylene, and Oxygen into the Discharge Zone. High Temp 57, 798–807 (2019). https://doi.org/10.1134/S0018151X19060105

Download citation