Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Numerical Study of the Influence of the Breakup of Dispersed Phase on the Distribution of a Shock Wave from Pure Gas into Aerosol

Abstract

In this paper, we compare the results of numerical calculations of the passage of a direct shock wave from pure gas into aerosol obtained with and without the effects of droplet breakup. The effect of the fragmentation of aerosol droplets on the profile and velocity of a compression wave propagating in a two-phase medium is determined. The droplet sizes at which the breakup of dispersed inclusions affects the process of the movement of a shock wave along aerosol are obtained.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. 1

    Nigmatulin, R.I., Dinamika mnogofaznykh sred (The Dynamics of Multiphase Media), Moscow: Nauka, 1987, part 1.

  2. 2

    Kutushev, A.G., Matematicheskoe modelirovanie volnovykh protsessov v aerodispersnykh i poroshkoobraznykh sredakh (Mathematical Simulation of Wave Processes in Aerodispersed and Powdery Msedia), St. Petersburg: Nedra, 2003.

  3. 3

    Yanenko, N.N., Soloukhin, R.I., Papyrin, A.N., and Fomin, V.M., Sverkhzvukovye dvukhfaznye techeniya v usloviyakh skorostnoi neravnovesnosti chastits (Supersonic Two-Phase Flows under Conditions of High-Speed Particle Nonequilibrium), Novosibirsk: Nauka, 1980.

  4. 4

    Varaksin, A.Yu., High Temp., 2014, vol. 52, no. 5, p. 752.

  5. 5

    Kratova, Yu.V., Fedorov, A.V., and Khmel’, T.A., Combust., Explos. Shock Waves (Engl. Transl.), 2009, vol. 45, no. 5, p. 591.

  6. 6

    Verevkin, A.A. and Tsirkunov, Yu.M., J. Appl. Mech. Tech. Phys., 2008, vol. 49, no. 5, p. 789.

  7. 7

    Bayanov, R.I. and Tukmakov, A.L., Izv. Vyssh. Uchebn. Zaved., Aviats. Tekh., 2015, no. 1, p. 19.

  8. 8

    Nigmatulin, R.I., Gubaidullin, D.A., and Tukma-kov, D.A., Dokl. Phys., 2016, vol. 61, no. 2, p. 70.

  9. 9

    Gubaidullin, D.A. and Tukmakov, D.A., Mat. Model., 2014, vol. 26, no. 10, p. 109.

  10. 10

    Gel’fand, B.E., Sil’nikov, M.V., and Takayama, K., Razrushenie kapel’ zhidkosti (Destruction of Liquid Droplets), St. Petersburg: St. Petersburg, Politekh. Univ., 2008.

  11. 11

    Varaksin, A.Yu., High Temp., 2017, vol. 55, no. 2, p. 286.

  12. 12

    Pilch, M. and Erdman, C.A., Int. J. Multiphase Flow, 1987, vol. 13, p. 741.

  13. 13

    Ranger, A.A., Acta Astronaut., 1972, vol. 17, nos 4/5, p. 675.

  14. 14

    Boiko, V.M. and Poplavskii, S.V., Vestn. Nizhegorodsk. Univ. im. N.I. Lobachevskogo, 2011, no. 4, p. 2030.

  15. 15

    Arefyev, K.Yu. and Voronetsky, A.V., Thermophys. Aeromech., 2015, vol. 22, no. 5, p. 585.

  16. 16

    Fletcher, C.A., Computation Techniques for Fluid Dynamics, Berlin: Springer, 1988.

  17. 17

    Muzafarov, I.F. and Utyuzhnikov, S.V., Mat. Model., 1993, vol. 5, no. 3, p. 74.

  18. 18

    Kulikov, V.N., Lapidus, A.I., Tivanov, G.G., and Shamshev, K.N., Fluid Dyn., 1989, vol. 24, no. 2, p. 329.

Download references

Funding

The study was supported by the Russian Foundation for Basic Research, project no. 1819-01-00442.

Author information

Correspondence to D. A. Gubaidullin or D. A. Tukmakov.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gubaidullin, D.A., Tukmakov, D.A. Numerical Study of the Influence of the Breakup of Dispersed Phase on the Distribution of a Shock Wave from Pure Gas into Aerosol. High Temp 57, 899–903 (2019). https://doi.org/10.1134/S0018151X19060099

Download citation