Advertisement

High Temperature

, Volume 57, Issue 6, pp 784–797 | Cite as

A New Mechanism of Interaction between a Welding Arc Discharge of Reverse-Polarity Direct Current and an Aluminum Surface

  • A. E. BalanovskiiEmail author
PLASMA INVESTIGATIONS
  • 12 Downloads

Abstract

The results of a study of aluminum welding by reverse-polarity direct current in a medium of protective gases (argon) at the stage of the binding and formation of the pool of melted metal are presented. It is shown that cathode spots in a current range of 5–50 A and action time of up to 1 s do not clean the cathode film from the aluminum surface but remelt the surface layer. The types of cathode spots that form on the aluminum surface are analyzed. It is shown that evaporation is the main mechanism for the removal of the oxide film. A new mechanism of the interaction between a welding arc discharge an aluminum surface is proposed: the main role in the formation of the welding pool is played by an immobile cathode spot, which, on the one hand, evaporates the oxide film and, on the other, intensely heats the surface layer of the aluminum to the phase transition due to high heat density. After the formation of the welding pool, the immobile cathode spot disappears, followed by the diffusion regime of welding arc burning. The regime is characterized by a uniform distribution of the electric field over the length of the discharge gap with a low potential decrease and occupies almost whole interelectrode gap.

Notes

Supplementary material

10740_2019_8181_MOESM1_ESM.mp4 (11.5 mb)
10740_2019_8181_MOESM1_ESM.mp4
10740_2019_8181_MOESM2_ESM.mp4 (5.8 mb)
10740_2019_8181_MOESM2_ESM.mp4

REFERENCES

  1. 1.
    Balanovskii, A.E., High Temp., 2018, vol. 56, no. 3, p. 319.CrossRefGoogle Scholar
  2. 2.
    Balanovskii, A.E., High Temp., 2018, vol. 56, no. 4, p. 486.CrossRefGoogle Scholar
  3. 3.
    Nikiforov, G.D., Metallurgiya svarki plavleniem alyuminievykh splavov (Metallurgical Aspects of Fusion Welding of Aluminum Alloys), Moscow: Mashinostroenie, 1972.Google Scholar
  4. 4.
    Mathers, G., The Welding of Aluminium and Its Alloys, Cambridge: Woodhead, 2002.CrossRefGoogle Scholar
  5. 5.
    Sarrafi, R. and Kovacevic, R., Weld. J., 2010, vol. 89, p. 1.Google Scholar
  6. 6.
    Abralov, M.A., Argonodugovaya svarka alyuminievykh splavov (Argon Arc Welding of Aluminum Alloys), Tashkent: Fan, 1989.Google Scholar
  7. 7.
    Yusufova, Z.A. and Leskov, G.I., Svar. Proizvod., 1970, no. 7, p. 57.Google Scholar
  8. 8.
    Budnik, V.P., Rabkin, D.M., Smiyan, O.D., and Tovmachenko, V.N., Avtom. Svarka, 1975, no. 10, p. 74.Google Scholar
  9. 9.
    Budnik, V.P, Avtom. Svarka, 1994, no. 12, p. 23.Google Scholar
  10. 10.
    Sarrafi, R. and Kovacevic, R., Proc. Inst. Mech. Eng.,Part B, 2009, vol. 223, p. 1143.Google Scholar
  11. 11.
    Shi, Z., Yuan, Q., Zhao, R., et al., IEEE Trans. Plasma Sci., 2011, vol. 39, no. 7, p. 1585.ADSCrossRefGoogle Scholar
  12. 12.
    Takeda K. and Takeuchi, S., Mater. Trans.,JIM, 1997, vol. 38, no. 7, p. 636.Google Scholar
  13. 13.
    Saito, M., Tobe, S., Iwao, T., and Inaba, T., in Proc. 22nd Int. Symp. on Discharges and Electrical Insulation in Vacuum (ISDEIV), Matsue, 2006, p. 550.Google Scholar
  14. 14.
    Shi, Z., Li, W., Yan, N., Zhang, Y., et al., in Proc. 25th Int. Symp. on Discharges and Electrical Insulation in Vacuum (ISDEIV), Tomsk, 2012, p. 293.Google Scholar
  15. 15.
    Tang, Z., Wu, R., Yang, S., et al., IEEE Trans. Plasma Sci., 2015, vol. 43, no. 5, p. 1793.ADSCrossRefGoogle Scholar
  16. 16.
    Tang, Z.L., Yang, K., Liu, H.X., et al., Phys. Plasmas, 2016, vol. 23, no. 3, 033501.ADSCrossRefGoogle Scholar
  17. 17.
    Takeda, K. and Sugimoto, M., IEEE Trans. Plasma Sci., 2001, vol. 29, no. 5, p. 718.ADSCrossRefGoogle Scholar
  18. 18.
    Li, W., Shi, Z., Wang, C., et al., IEEE Trans. Plasma Sci., 2017, vol. 45, no. 1, p. 106.ADSCrossRefGoogle Scholar
  19. 19.
    Kamishima, S., Iwao, T., and Yumoto, M., IEEJ Trans. Electr. Electron. Eng., 2010, vol. 5, no. 6, p. 670.CrossRefGoogle Scholar
  20. 20.
    Sato, A., Iwao, T., and Yumoto, M., IEEE Trans. Plasma Sci., 2007, vol. 35, no. 4, p. 1004.ADSCrossRefGoogle Scholar
  21. 21.
    Takeda, K., Surf. Coat. Technol., 2000, vol. 131, nos. 1–3, p. 234.CrossRefGoogle Scholar
  22. 22.
    Shi, Z., Jia, S., Wang, L., Yuan, Q., and Song, X., J. Phys. D: Appl. Phys., 2008, vol. 41, no. 17, 175209.ADSCrossRefGoogle Scholar
  23. 23.
    Mesyats, G.A., Ektony v vakuumnom razryade: proboi, iskra, duga (Actons in a Vacuum Discharge: Breakdown, Spark, Arc), Moscow: Nauka, 2000.Google Scholar
  24. 24.
    Iwao, T., Inagaki, Y., and Yumoto, M., Vacuum, 2006, vol. 80, nos. 11–12, p. 1284.ADSCrossRefGoogle Scholar
  25. 25.
    Rakhovskii, V.I., Fizicheskie osnovy kommutatsii elektricheskogo toka v vakuume (Physical Principles of Switching Electric Current in Vacuum), Moscow: Nauka, 1970.Google Scholar
  26. 26.
    Vacuum Arcs: Theory and Application, Lafferty, J.M., Ed., New York: Wiley, 1980.Google Scholar
  27. 27.
    Lyubimov, G.A. and Rakhovskii, V.I., Sov. Phys. Usp., 1978, vol. 21, no. 4, p. 693.ADSCrossRefGoogle Scholar
  28. 28.
    Tashiro, S., Sawato, H., and Tanaka, M., Trans.JWRI, 2010, vol. 39, no. 2, p. 180.Google Scholar
  29. 29.
    Lenivkin, V.A., Dyurgerov, N.G., and Sagirov, Kh.N., Tekhnologicheskie svoistva svarochnoi dugi v zashchitnykh gazakh (Technological Properties of a Welding Arc in Shielding Gases), Moscow: Mashinostroenie, 1989.Google Scholar
  30. 30.
    Lapin, I.E., Kosovich, V.A., and Savinov, A.V., Svar. Proizvod., 1996, no. 10, p. 17.Google Scholar
  31. 31.
    Zhao, L., Wang, Q., Yingchun, G., Cong, B., Surf. Rev. Lett., 2015, vol. 22, no. 6, 1 550 079.CrossRefGoogle Scholar
  32. 32.
    Balanovskii, A.E., Svar. Proizvod., 2016, no. 6, p. 31.Google Scholar
  33. 33.
    Balanovskii, A.E., High Temp., 2016, vol. 54, no. 5, p. 627.CrossRefGoogle Scholar
  34. 34.
    Ros, J. and Anders, A., J. Phys. D: Appl. Phys., 2008, vol. 38, no. 23p. 4184.ADSGoogle Scholar
  35. 35.
    Wang, Q., Yingchun, G., Cong, B., and Qi, B., J. Laser Appl., 2016, vol. 28, 022507.CrossRefGoogle Scholar
  36. 36.
    Dimogerontakis, T., Oltra, R., and Heintz, O., Appl. Phys. A, 2005, vol. 81, no. 6, p. 1173.ADSCrossRefGoogle Scholar
  37. 37.
    Li Meng, Xie De-Gang, Ma Evan, Li Ju, Zhang Xi-Xiang, and Shan, Z.-W., Nat. Communю, 2017, vol. 8, p. 14564.ADSCrossRefGoogle Scholar
  38. 38.
    Xie, D.-G., Wang, Z.-J., Sun, J., Li, J., Ma, E., and Shan, Z.-W., Nat. Mater., 2015, vol. 14, p. 1038.Google Scholar
  39. 39.
    Katoh, M., Nishio, K., Yamaguchi, T., and Mukae, S., Weld. Int., 1995, vol. 9, no. 5, p. 360.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Irkutsk National Research Technical UniversityIrkutskRussia

Personalised recommendations