Advertisement

High Temperature

, Volume 57, Issue 3, pp 368–371 | Cite as

Analysis of Stability of Small Metal Clusters during Metal Vapor Condensation

  • A. G. VorontsovEmail author
  • A. E. Korenchenko
  • B. R. Gelchinski
THERMOPHYSICAL PROPERTIES OF MATERIALS
  • 7 Downloads

Abstract

A statistical analysis of the results of molecular-dynamic calculations of metal (Cu or Ti) vapor condensation in an inert gas (Ar) medium has been performed. Condensation proceeds with the formation of small particles consisting of metal atoms—clusters. The internal energy of the metal cluster—the sum of the kinetic energy of the atoms in the center of mass system and potential energy—is chosen as the key characteristic describing its state. It is shown that the internal energy value gives the possibility for the prediction of the duration of the cluster existence, from birth to decay, i.e., it describes the ability of the cluster to grow. The temporal evolution of the distribution function of the clusters over the internal energy values is presented.

Notes

FUNDING

The work was performed with support from the government of the Russian Federation (Regulation no. 211 of March 16, 2013), Agreement no. 02.A03.21.0011, and also with partial support from the Institute of Metallurgy, Ural Branch of Russian Academy of Sciences (IMET), topic no. 0396-2019-0004.

REFERENCES

  1. 1.
    Frishberg, I.V., Kvater, L.I., Kuz’min, B.P., and Gribovskii, S.V., Gazofaznyi metod polucheniya poroshkov (Gas Phase Powder Method), Moscow: Nauka, 1978.Google Scholar
  2. 2.
    Becker, R. and Doring, W., Ann. Phys. (New York), 1935, vol. 24, p. 719.ADSGoogle Scholar
  3. 3.
    Zel’dovich, Ya.B., Zh. Eksp. Teor. Fiz., 1942, vol. 12, p. 525.Google Scholar
  4. 4.
    Frenkel’, Ya.I., Zh. Eksp. Teor. Fiz., 1939, vol. 9, no. 2, p. 199.Google Scholar
  5. 5.
    Fisenko, S.P., Tech. Phys., 2013, vol. 58, no. 5, p. 658.CrossRefGoogle Scholar
  6. 6.
    Varaksin, A.Yu., High Temp., 2015, vol. 53, no. 3, p. 423.CrossRefGoogle Scholar
  7. 7.
    Vorontsov, A.G., Gel’chinskii, B.R., and Koren-chenko, A.E., J. Exp. Theor. Phys., 2012, vol. 115, no. 5, p. 789.ADSCrossRefGoogle Scholar
  8. 8.
    Lenev, D.Yu. and Norman, G.E., J. Phys.: Conf. Ser., 2018, vol. 946, 012111.Google Scholar
  9. 9.
    Plimpton, S., J. Comp. Phys., 1995, vol. 117, no. 1, p. 1.ADSCrossRefGoogle Scholar
  10. 10.
    Foiles, S.M., Baskes, M.I., and Daw, M.S., Phys. Rev. B: Condens. Matter Mater. Phys., 1986, vol. 33, p. 7983.ADSCrossRefGoogle Scholar
  11. 11.
    Zhou, X.W., Johnson, R.A., and Wadley, H.N.G., Phys. Rev. B: Condens. Matter Mater. Phys., 2004, vol. 69, 144113.ADSCrossRefGoogle Scholar
  12. 12.
    Korenchenko, A.E., Vorontsov, A.G., Gel’chinskii, B.R., and Sannikov, G.P., Phys. A (Amsterdam, Neth.), 2018, vol. 496, p. 147.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. G. Vorontsov
    • 1
    Email author
  • A. E. Korenchenko
    • 1
    • 2
  • B. R. Gelchinski
    • 1
  1. 1.South Ural State UniversityChelyabinskRussia
  2. 2.Institute of Metallurgy, Ural Branch, Russian Academy of SciencesYekaterinburgRussia

Personalised recommendations