High Temperature

, Volume 57, Issue 3, pp 355–360 | Cite as

Liquid–Vapor Phase Transitions and Critical Properties of the C3H7OH–C6H14 System

  • E. A. BazaevEmail author
  • A. R. Bazaev


Proceeding from the experimental (p,T,x) and (p,ρ,T,x) dependences for mixtures of 1-propanol and n-hexane (mole fractions 0.2, 0.5, 0.8, and 0.9) in the two-phase (liquid–vapor), single-phase (liquid and vapor), near-critical, and supercritical regions, the parameters of the points of liquid–vapor phase transformations have been determined by the method of isochore kinks p = f(T)ρ,x and the parameters of the critical points have been found by the semigraphical method with allowance for the scaling behavior. The dependences of the pressure on temperature, density, and composition along the phase-coexistence curve are described by a three-parameter polynomial equation of state: expansion of the compressibility factor Z = p/RTρ in powers of the reduced density, reduced temperature, and composition. The mean relative error of deviation of the calculated pressures from experimental values does not exceed 1%. The temperature dependence of the system density along the liquid–vapor phase-coexistence curve is described by two power-law functions at critical exponent β0 = 0.338 ± 0.002: far from the critical point and in the symmetric part of the equilibrium curve. The mean relative error is 1.47%.



This study was supported by the Russian Foundation for Basic Research, project no. 18-08-00124 A.


  1. 1.
    Stanley, H.E., Introduction to Phase Transitions and Critical Phenomena, Oxford: Oxford Univ. Press, 1971.Google Scholar
  2. 2.
    Potashinskii, A.Z. and Pokrovskii, V.L., Fluktuatsionnaya teoriya fazovykh perekhodov (The Fluctuation Theory of Phase Transitions), Moscow: Nauka, 1982, 2nd ed.Google Scholar
  3. 3.
    Anisimov, M.A., Kriticheskie yavleniya v zhidkostyakh i zhidkikh kristallakh (Critical Phenomena in Liquids and Liquid Crystals), Moscow: Nauka, 1987.Google Scholar
  4. 4.
    Kirillin, V.A., and Sheindlin, A.E., Issledovanie termodinamicheskikh svoistv veshchestv (Study of Thermodynamic Properties of Substances), Moscow: Gosenergoizdat, 1963.Google Scholar
  5. 5.
    Durov, V.A. and Ageev, E.P., Termodinamicheskaya teoriya rastvorov (Thermodynamic Theory of Solutions), Moscow: URSS, 2003, 2nd ed.Google Scholar
  6. 6.
    Smirnova, N.A., Molekulyarnye teorii rastvorov (Molecular Theories of Solutions), Leningrad: Khimiya, 1987.Google Scholar
  7. 7.
    Gumerov, F.M., Sabirzyanov, A.N., and Gumerova, G.I., Sub- i sverkhkriticheskie flyuidy v protsessakh pererabotki polimerov (Subcritical and Supercritical Fluids in Polymer Processing), Kazan: FEN, 2007.Google Scholar
  8. 8.
    Zaleputin, D.Yu., Til’kunova, N.A., Chernysheva, I.V., and Polyakov, V.S., Sverkhkrit. Flyuidy: Teor. Prakt., 2006, vol. 1, no. 1, p. 27.Google Scholar
  9. 9.
    Vasil’ev, V.A., Krainov, A.V., and Gevorkov, I.G., Therm. Eng., 1996, vol. 43, no. 5, p. 385.Google Scholar
  10. 10.
    Novikov, I.I., Dokl. Akad. Nauk SSSR, 1994, vol. 335, no. 3, p. 308.Google Scholar
  11. 11.
    NIST Chemistry WebBook. chemistry/fluid/Google Scholar
  12. 12.
    Abdulagatov, I.M., Bazaev, E.A., Bazev, A.R., and Rabezkii, M.G., J. Supercrit. Fluids, 2001, vol. 19, no. 3, p. 219.CrossRefGoogle Scholar
  13. 13.
    Bazaev, E.A. and Bazaev, A.R., High Temp., 2013, vol. 51, no. 2, p. 224.CrossRefGoogle Scholar
  14. 14.
    Rasulov, S.M. and Rasulov, A.R., High Temp., 2005, vol. 43, no. 1, p. 45.Google Scholar
  15. 15.
    Abdulagatov, I.M., Bazaev, A.R., Bazaev, E.A., and Dzhapparov, T.A., J. Supercrit. Fluids, 2016, no. 117, p. 172.Google Scholar
  16. 16.
    Brunner, E., J. Chem. Thermodyn., 1990, vol. 22, p. 335.CrossRefGoogle Scholar
  17. 17.
    De Loos, Th.W., Penders, W.G., and Lichtenthaler, R.N., J. Chem. Thermodyn., 1982, vol. 14, p. 83.CrossRefGoogle Scholar
  18. 18.
    Basok, B.I., Cand. Sci. (Phys–Math.) Dissertation, Kiev: Kiev State Univ., 1985.Google Scholar
  19. 19.
    Nazmutdinov, A.G., Alekina, E.V., and Nesterova, T.N., Russ. J. Phys. Chem. A, 2008, vol. 82, no. 11, p. 1857.CrossRefGoogle Scholar
  20. 20.
    Morton, D.W., Lui, M.P.W., and Young, C.L., J. Chem. Thermodyn., 2003, vol. 35, no. 11, p. 1737.CrossRefGoogle Scholar
  21. 21.
    Seungho Jung, Moon Sam Shin, and Hwayong Kim, J. Chem. Eng. Data, 2006, vol. 51, no. 2, p. 656.CrossRefGoogle Scholar
  22. 22.
    Singh, K.C., Kalra, K.C., Maken, S., and Yadav, B.L., J. Chem. Eng. Data, 1994, vol. 39, no. 2, p. 241.CrossRefGoogle Scholar
  23. 23.
    Byung Chul Oh, Youngdae Kim, Hun Yong Shin, and Hwayong Kim, Fluid Phase Equilib., 2004, vol. 220, no. 1, p. 41.CrossRefGoogle Scholar
  24. 24.
    Singh, K.C., Kalra, K.C., Maken, S., and Gupta, V., Thermochim. Acta, 1996, vol. 276, p. 271.CrossRefGoogle Scholar
  25. 25.
    Singh, K.C., Kalra, K.C., Maken, S., and Gupta, V., Fluid Phase Equilib., 1996, vol. 119, nos. 1–2, p. 175.CrossRefGoogle Scholar
  26. 26.
    Chao, J.P. and Dai, M., Thermochim. Acta, 1988, vol. 123, p. 285.CrossRefGoogle Scholar
  27. 27.
    Bazaev, E.A. and Bazaev, A.R., Sverkhkrit. Flyuidy: Teor. Prakt., 2010, vol. 5, no. 3, p. 15.Google Scholar
  28. 28.
    Bazaev, E.A., Bazaev, A.R., and Dzhapparov, T.A., Vestn. Kazan. Gos. Tekhnol. Univ., 2010, no. 1, p. 242.Google Scholar
  29. 29.
    Abdulagatov, I.M., Bazaev, A.R., Bazaev, E.A., and Dzhapparov, T.A., J. Mol. Liq., 2017, vol. 239, p. 14.CrossRefGoogle Scholar
  30. 30.
    Alhasov, A.B., Bazaev, A.R., Bazaev, E.A., and Osmanova, B.K., J. Phys.: Conf. Ser., 2017, vol. 891, 012327.Google Scholar
  31. 31.
    Bazaev, E.A., Bazaev, A.R., and Abdurashidova, A.A., High Temp., 2004, vol. 42, no. 6, p. 895.CrossRefGoogle Scholar
  32. 32.
    Bazaev, E.A., Bazaev, A.R., and Abdurashidova, A.A., High Temp., 2009, vol. 47, no. 2, p. 195.CrossRefGoogle Scholar
  33. 33.
    Xin, N., Liu, Y., Guo, X., Liu, X., Zhang, Y., and He, M., J. Supercrit. Fluids, 2016, vol. 108, p. 35.CrossRefGoogle Scholar
  34. 34.
    Hicks, C.P. and Young, C.L., Chem. Rev., 1975, vol. 75, p. 119.CrossRefGoogle Scholar
  35. 35.
    Gil, L., Blanco, S.T., Rivas, C., Laga, E., Fernández, J., Artal, M., and Velasco, I., J. Supercrit. Fluids, 2012, vol. 71, p. 26.CrossRefGoogle Scholar
  36. 36.
    Oh, B.C., Kim, Y., Shin, H.Y., and Kim, H., Fluid Phase Equilib., 2004, vol. 220, no. 1, p. 41.CrossRefGoogle Scholar
  37. 37.
    Sychev, V.V., Vasserman, A.A., Kozlov, A.D., et al., Termodinamicheskie svoistva azota (Thermodynamic Properties of Nitrogen), Moscow: Izd. Standartov, 1977.Google Scholar
  38. 38.
    Vukalovich, M.P., Altunin, V.V., and Spiridonov, G.A., Teplofiz. Vys. Temp., 1967, vol. 5, no. 2, p. 265.Google Scholar
  39. 39.
    Shimanskaya, E.T., Oleinikova, A.V., and Shimanskii, Yu.I., Fiz. Nizk. Temp., 1990, vol. 16, no. 11, p. 1377.Google Scholar
  40. 40.
    Shimanskaya, E.T., Shimanskii, Yu.I., and Oleinikova, A.V., Zh. Fiz. Khim., 1992, vol. 66, no. 4, p. 1054.Google Scholar
  41. 41.
    Alekhin, A.D., J. Mol. Liq., 2005, vol. 120, p. 43.CrossRefGoogle Scholar
  42. 42.
    Sheludyak, Yu.E. and Rabinovich, V.A., Teplofiz. Vys. Temp., 1993, vol. 31, no. 6, p. 915.Google Scholar
  43. 43.
    Shimanskii, Yu.I. and Shimanskaya, E.T., Russ. J. Phys. Chem. A, 1996, vol. 70, no. 3, p. 406.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Institute of Problems of Geothermy, Dagestan Scientific Center, Russian Academy of SciencesMakhachkalaRussia

Personalised recommendations