Advertisement

High Temperature

, Volume 57, Issue 3, pp 372–378 | Cite as

Laminar Mixed Convection in a Vertical Flat Channel with a Constant Wall Heat Flux

  • E. P. ValuevaEmail author
HEAT AND MASS TRANSFER AND PHYSICAL GASDYNAMICS
  • 3 Downloads

Abstract

An analytical solution to a system of momentum and energy equations was obtained for a fully developed laminar flow and heat transfer in a vertical flat channel with a constant wall heat flux under the effect of buoyancy force. The velocity and temperature profiles and the Nusselt numbers for the downward and upward flows are compared. The behavior of these parameters under the effect of the buoyancy force is explained. The predicted Nusselt numbers are compared with the available data for round pipes. All components of the hydraulic resistance coefficient encountered in the upward and downward flows are analyzed.

Notes

REFERENCES

  1. 1.
    Martinelli, R.C. and Boelter, L.M.K., Univ. Calif. Publ. Eng., 1942, vol. 5, no. 2, p. 23.Google Scholar
  2. 2.
    Ostroumov, G.A., Zh. Tekh. Fiz., 1950, vol. 20, no. 6, p. 750.MathSciNetGoogle Scholar
  3. 3.
    Ostroumov, G.A., Svobodnaya konvektsiya v usloviyakh vnutrennei zadachi (Free Convection under Conditions of Internal Problem), Moscow–Leningrad: Gos. Izd. Tekhn.-Teor. Lit., 1952.Google Scholar
  4. 4.
    Petukhov, B.S., Teploobmen i soprotivlenie pri laminarnom techenii zhidkosti v trubakh (Heat Transfer and Resistance during Laminar Flow of Fluid in Pipes), Moscow: Energiya, 1967.Google Scholar
  5. 5.
    Gebhart, B., Jaluria, Y., Mahajan, R.L., and Sammakia, B., Buoyancy Induced Flows and Transport, New York: Hemisphere, 1988.zbMATHGoogle Scholar
  6. 6.
    Hallman, T.M., Trans. ASME, Ser. C, 1956, vol. 78, p. 1831.Google Scholar
  7. 7.
    Tao, L.N., Appl. Sci. Res., 1960, vol. A9, no. 5, p. 357.CrossRefGoogle Scholar
  8. 8.
    Polyakov, A.F., J. Appl. Mech. Tech. Phys., 1977, vol. 18, no. 1, p. 106.ADSCrossRefGoogle Scholar
  9. 9.
    Tao, L.N., Trans. ASME, 1960, vol. 82, no. 3, p. 233.Google Scholar
  10. 10.
    Yao, L.S., Int. J. Heat Mass Transfer, 1983, vol. 26, no. 1, p. 65.CrossRefGoogle Scholar
  11. 11.
    Polyakov, A.F., High Temp., 2014, vol. 52, no. 1, p. 72.CrossRefGoogle Scholar
  12. 12.
    Polyakov, A.F., High Temp., 2015, vol. 53, no. 5, p. 719.CrossRefGoogle Scholar
  13. 13.
    Steiner, A., J. Fluid Mech., 1971, vol. 47, p. 503.ADSCrossRefGoogle Scholar
  14. 14.
    Collins, M.W., in Proc. 6th Int. Heat Transfer Conf., Toronto, 1978, vol. 1, p. 25.Google Scholar
  15. 15.
    Coon, C.W. and Perkins, H.C., J. Heat Transfer, 1970, vol. 92, no. 3, p. 506.CrossRefGoogle Scholar
  16. 16.
    Fraim, F.W. and Heiser, W.H., Fluid. Mech., 1968, vol. 33, no. 2, p. 397.ADSCrossRefGoogle Scholar
  17. 17.
    Kirillov, I.R., Obukhov, D.M., Genin, L.G., Sviridov, V.G., et al., Fusion Eng. Des., 2016, vol. 104, p. 1.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Moscow Power Engineering InstituteMoscowRussia

Personalised recommendations