Advertisement

High Temperature

, Volume 57, Issue 2, pp 269–271 | Cite as

Viscosity and Density of Methyl Palmitate

  • S. M. Rasulov
  • I. A. IsaevEmail author
  • S. M. Orakova
SHORT COMMUNICATIONS
  • 7 Downloads

Abstract

The viscosity and density of one of the components of a biofuel, methyl palmitate, are measured in the temperature range from room temperature to 372 K at atmospheric pressure. The approximating equations are given.

Notes

REFERENCES

  1. 1.
    Air Monitoring by Spectroscopic Techniques, Sigrist, M.W., Ed., New York: Wiley, 1994.Google Scholar
  2. 2.
    Schramm, D.U., Sthel, M.S., Silva, M.G., Carneiro, L.O., Junior, A.J.S., Souza, A.P., and Vargas, H., Infrared Phys. Technol., 2003, vol. 44, p. 263.ADSCrossRefGoogle Scholar
  3. 3.
    Demirbas, A., Energy Convers. Manage., 2003, vol. 44, p. 2093.CrossRefGoogle Scholar
  4. 4.
    Knothe, G., Van Gerpen, J., and Krahl, J., The Biodiesel Handbook, Champaign: AOCS, 2005.CrossRefGoogle Scholar
  5. 5.
    Saraf, S. and Thomas, B., Process Saf. Environ. Prot., 2007, vol. 85, p. 360.CrossRefGoogle Scholar
  6. 6.
    Castro, M.P.P., Andrade, A.A., Franco, R.W.A., Miranda, P.C.M.L., Sthel, M.H.V., Constantino, R., and Baesso, M.L., Chem. Phys. Lett., 2005, vol. 411, p. 18.ADSCrossRefGoogle Scholar
  7. 7.
    Morón-Villarreyes, J.A., Soldi, C., Amorim, A.M., Pizzolatti, M.G., Mendonça, A.P., Jr., and D’Oca, M.G.M., Fuel, 2007, vol. 86, p. 1977.CrossRefGoogle Scholar
  8. 8.
    Bacha, J., Blondis, L., Freel, J., Hemighaus, G., Hoekman, K., and Hogue, N., Diesel Fuels Technical Review (FTR-2), Chevron, 1998.Google Scholar
  9. 9.
    Frenkel, M., Chirico, R., Diky, V., Muzny, C.D., Kazakov, A., Magee, J.W., Abdulagatov, I.M., and Jeong Won Kang, NIST ThermoData Engine, NIST Standard Reference Database 103b: Pure Compound, Binary Mixtures, and Chemical Reactions, version 5.0, Boulder, CO: Natl. Inst. Standards Technol., 2010.Google Scholar
  10. 10.
    Kanel’, G.I., Savinykh, A.S., Garkushin, G.V., and Razorenov, S.V., High Temp., 2017, vol. 55, no. 3, p. 365.CrossRefGoogle Scholar
  11. 11.
    Khasanshin, T.S., Golubeva, N.V., Samuilov, V.S., and Shchemelev, A.P., High Temp., 2017, vol. 55, no. 5, p. 685.CrossRefGoogle Scholar
  12. 12.
    Khusnutdinov, R.M., Mokshin, A.V., Bel’tyukov, A.L., and Olyanina, N.V., High Temp., 2018, vol. 56, no. 2, p. 201.CrossRefGoogle Scholar
  13. 13.
    Pratas, M.J., Freitas, S., Oliveira, M.B.S., Monteiro, S.C., Lima, Á.S., and Coutinho, J.A.P., J. Chem. Eng. Data, 2010, vol. 55, p. 3983.CrossRefGoogle Scholar
  14. 14.
    Pratas, M.J., Freitas, S., Oliveira, M.B., Monteiro, S.C., Lima, Á.S., and Coutinho, J.A.P., J. Chem. Eng. Data, 2011, vol. 56, p. 2175.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Amirkhanov Institute of Physics, Dagestan Scientific Center, Russian Academy of SciencesMakhachkalaRussia

Personalised recommendations