Advertisement

High Temperature

, Volume 57, Issue 3, pp 308–315 | Cite as

Highly Ionized Helium Arc Plasma. Determination of the Temperature in Nonequilibrium Conditions and the Effect of Plasma Microfields

  • O. V. Korshunov
  • V. F. Chinnov
  • D. I. KavyrshinEmail author
PLASMA INVESTIGATIONS
  • 3 Downloads

Abstract

Methods are proposed for the spectral measurement of electron temperature Те in a highly ionized nonequilibrium He plasma at atmospheric pressure based on a comparison of the intensities of atomic and ionic lines with a whole complex of experimental data (primarily, ne). The large energy gap between the emitting HeI and HeII excited levels (of more than 50 eV) and allowance for the nonequilibrium manifested in the overpopulation of the atomic levels with respect to the ionic levels make it possible to make reliable and simple Те estimates, especially if the ionization energies of the emitting levels of the atom and the ion are close. For practical use, three pairs of HeI and HeII lines observed in the spectral range of 200–1100 nm are recommended. The radial and temporal (upon the quasistationary pulsed heating of the electric arc plasma) dependences of Те are obtained in the range of axial values of 3.2–4.7 eV.

Notes

FUNDING

The work was supported by the Russian Foundation for Basic Research, project no. 18-32-00292.

REFERENCES

  1. 1.
    Korshunov, O.V., Chinnov, V.F., and Kavyrshin, D.I., High Temp., 2019, vol. 57, no. 2, p. 147.Google Scholar
  2. 2.
    Heading, D.J., Marangos, J.P., and Burgess, D.D., J. Phys. B, 1992, vol. 25, p. 4745.ADSCrossRefGoogle Scholar
  3. 3.
    Buscher, S., Glenzer, S., Wrubel, Th., and Kunze, H.-J., J. Quant. Spectrosc. Radiat. Transfer, 1995, vol. 54, nos. 1–2, p. 73.ADSCrossRefGoogle Scholar
  4. 4.
    Isakaev, E.Kh., Chinnov, V.F., Sargsyan, M.A., and Kavyrshin, D.I., High Temp., 2013, vol. 51, no. 2, p. 141.CrossRefGoogle Scholar
  5. 5.
    Biberman, L.M., Vorob’ev, V.S., and Yakubov, I.T., Kinetika neravnovesnoi nizkotemperaturnoi plazmy (Kinetics of Nonequilibrium Low-Temperature Plasma), Moscow: Nauka, 1982.Google Scholar
  6. 6.
    Golubkov, G.V., Egorov, V.V., and Kuznetsov, N.M., Fiz. Plazmy, 1979, vol. 5, no. 3, p. 579.ADSGoogle Scholar
  7. 7.
    Lankin, A. and Norman, G., Contrib. Plasma Phys., 2009, vol. 49, no. 10, p. 723.ADSCrossRefGoogle Scholar
  8. 8.
    Gavrilov, V.E. and Gavrilova, T.V., Opt. Spektrosk., 1987, vol. 63, no. 4, p. 727.Google Scholar
  9. 9.
    Kobzev, G.A., Kurilenkov, Yu.K., and Norman, G.E., Teplofiz. Vys. Temp., 1977, vol. 15, no. 1, p. 193.Google Scholar
  10. 10.
    D’yachkov, L.G., in Entsiklopediya nizkotemperaturnoi plazmy (Encyclopedia of Low-Temperature Plasma), Fortov, V.E., Ed., vol. 1, p. 391.Google Scholar
  11. 11.
    D’yachkov, L.G., Kavyrshin, D.I., Korshunov, O.V., and Chinnov, V.F., High Temp., 2018, vol. 56, no. 4, p. 605.CrossRefGoogle Scholar
  12. 12.
    D’yachkov, L.G., High Temp., 1997, vol. 35, no. 5, p. 811.Google Scholar
  13. 13.
    Gavrilova, T.V., Opt. Spektrosk., 1992, vol. 73, no. 3, p. 449.Google Scholar
  14. 14.
    Chinnov, V.F., Kavyrshin, D.I., Ageev, A.G., Korshunov, O.V., Sargsyan, M.A., and Efimov, A.V., J. Phys.: Conf. Ser., 2016, vol. 774, 012200.Google Scholar
  15. 15.
    Spitzer, L., Jr., Physics of Fully Ionized Gases, New York: Wiley, 1962.zbMATHGoogle Scholar
  16. 16.
    Kramida, A., Ralchenko, Yu., and Reader, J., NIST Atomic Spectra Database (ver. 5.3), 2015. http://physics.nist.gov/asdGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • O. V. Korshunov
    • 1
  • V. F. Chinnov
    • 1
  • D. I. Kavyrshin
    • 1
    Email author
  1. 1.Joint Institute for High Temperatures, Russian Academy of SciencesMoscowRussia

Personalised recommendations