Advertisement

High Temperature

, Volume 57, Issue 2, pp 177–181 | Cite as

Heat Capacity of Nickel–Phosphorus Eutectic Melts

  • L. V. KamaevaEmail author
  • V. I. Lad’yanov
THERMOPHYSICAL PROPERTIES OF MATERIALS
  • 10 Downloads

Abstract

Ni–P alloys containing phosphorus from 15 to 23 at %, which is close to the eutectic concentration, are studied with differential scanning calorimetry. The heat capacity CP is calculated at a constant pressure for the melts from the obtained data. The CP values of the alloys at temperatures above their melting points at 50°C are 0.53–0.59 J/(g K) and are in good agreement with the literature heat capacity values for liquid nickel and Ni3P. The CP of all of the melts linearly increases from the ТL liquidus temperature to 1400°С. There is a maximum on the concentration dependence of CP at the eutectic concentration.

Notes

FUNDING

This work was performed according to the government task (registration no. АААА-А16-116021010084-2).

REFERENCES

  1. 1.
    Stankus, S.V., Savchenko, I.V., and Yatsuk, O.S., High Temp., 2018, vol. 56, no. 1, p. 33.CrossRefGoogle Scholar
  2. 2.
    Bekturganova, A.Zh., Kasenova, Sh.B., Sagintaeva, Zh.I., Kasenov, B.K., Rustembekov, K.T., and Stoev, M., High Temp., 2017, vol. 55, no. 3, p. 465.CrossRefGoogle Scholar
  3. 3.
    Savvatimskiy, A.I., Onufriev, S.V., Muboyadzhyan, S.A., Seredkin, N.N., and Konyukhov, S.A., High Temp., 2017, vol. 55, no. 5, p. 825.CrossRefGoogle Scholar
  4. 4.
    Bolmatov, D., Brazhkin, V.V., and Trachenko, K., Sci. Rep., 2012, vol. 2, p. 421.ADSCrossRefGoogle Scholar
  5. 5.
    Wallace, D.C., Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 1998, vol. 57, no. 2, p. 1716.CrossRefGoogle Scholar
  6. 6.
    Korobenko, V.N., Polyakova, O.A., and Savvatimskii, A.I., Teplofiz. Vys. Temp., 2005, vol. 43, no. 1, p. 39.Google Scholar
  7. 7.
    Schmetterer Vizdal, J. and Ipser, H., Intermetallics, 2009, vol. 17, p. 826.CrossRefGoogle Scholar
  8. 8.
    Ganesan, R., Dinsdale, A.T., and Ipser, H., Intermetallics, 2011, vol. 19, p. 927.CrossRefGoogle Scholar
  9. 9.
    Dmitrienko, V.E., Astaf’ev, S.B., and Kleman, M., Mater. Sci. Eng., A, 2000, vols. 294–296, p. 413.CrossRefGoogle Scholar
  10. 10.
    Nemoshkalenko, V.V., Romanova, L.V., Il’inskii, A.G., et al., Amorfnye metallicheskie splavy (Amorphous Metal Alloys), Kiev: Naukova Dumka, 1987.Google Scholar
  11. 11.
    Naberezhnykh, V.P., Moroz, T.T., and Belov, B.F., Metallofizika, 1984, vol. 6, no. 5, p. 113.Google Scholar
  12. 12.
    Dovgopol, A.S., Rasplavy, 2001, no. 5, p. 83.Google Scholar
  13. 13.
    Lad’yanov, V.I., Kamaeva, L.V., and Bel’tyukov, A.L., Rasplavy, 2005, no. 6, p. 16.Google Scholar
  14. 14.
    Lad’yanov, V.I., Volkov, V.A., and Kamaeva, L.V., Russ. Metall. (Engl. Transl.), 2003, no. 6, p. 514.Google Scholar
  15. 15.
    Okamoto, H., J. Phase Equilib. Diffus., 2010, vol. 31, no. 2, p. 200.CrossRefGoogle Scholar
  16. 16.
    Povzner, A.A., Filanovich, A.N., and Koneva, E.S., High Temp., 2010, vol. 48, no. 3, p. 358.CrossRefGoogle Scholar
  17. 17.
    Safonova, E.V., Konchakov, R.A., Mitrofanov, Yu.P., Kobelev, N.P., Vinogradov, A.Yu., and Khonik, V.A., JETP Lett., 2016, vol. 103, no. 12, p. 765.ADSCrossRefGoogle Scholar
  18. 18.
    Aschcroft, N.W. and Mermin, N.D., Solid State Physics, New York: Holt, Rinehart and Winston, 1976, vol. 1.Google Scholar
  19. 19.
    Babichev, A.P., Babushkina, N.A., Bratkovskii, A.M., et al., Fizicheskie velichiny: Spravochnik (Physical Quantities: Reference Book), Grigor’ev, I.S. and Meili-khov, E.Z., Eds., Moscow: Energoatomizdat, 1991.Google Scholar
  20. 20.
    Perkul, A.F., Shchegolikhina, N.I., Gaiduchenko, A.B., and Grushevskii, K.I., Phys. Solid State, 2011, vol. 53, no. 10, p. 1987.ADSCrossRefGoogle Scholar
  21. 21.
    Ostrovskii, O.I., Grigoryan, V.A., and Vishkarev, A.F., Svoistva metallicheskikh rasplavov (Properties of Metal Melts), Moscow: Metallurgiya, 1988.Google Scholar
  22. 22.
    Zhao, D., Zhou, L., Du, Yo., Wang, Ai., Peng, Yi., Kong, Yi., Sha, Ch.Sh., Ouyang, Yi., and Zhang, W., CALPHAD: Comput. Coupling Phase Diagrams Thermochem., 2011, vol. 35, p. 284.CrossRefGoogle Scholar
  23. 23.
    Moiseev, G.K., Kulikova, T.V., and Il’inykh, N.I., Rasplavy, 2002, no. 1, p. 62.Google Scholar
  24. 24.
    Ishikawa, T., Okada, J.T., Paradis, P.-F., and Watanabe, Yu., J. Chem. Thermodyn., 2016, vol. 103, p. 107.CrossRefGoogle Scholar
  25. 25.
    Lindemann, F.A., Phys. Z., 1910, vol. 11, p. 609.Google Scholar
  26. 26.
    Bodryakov, V.Yu. and Zamyatin, V.M., High Temp., 2000, vol. 38, no. 5, p. 698.CrossRefGoogle Scholar
  27. 27.
    Assael, M.J., Kalyva, A.E., Antoniadis, K.D., Ba-nish, R.M., Egry, I., Wu, J., Kaschnitz, E., and Wakeham, W.A., J. Phys. Chem. Ref. Data, 2010, vol. 39, no. 3, 033105.ADSCrossRefGoogle Scholar
  28. 28.
    Taran, Yu.N. and Mazur, V.I., Struktura evtekticheskikh splavov (Structure of Eutectic Alloys), Moscow: Metallurgiya, 1977.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Udmurt Federal Research Center, Ural Branch, Russian Academy of SciencesIzhevskRussia

Personalised recommendations