Advertisement

High Temperature

, Volume 57, Issue 3, pp 420–424 | Cite as

Characteristics of the Influence of Phase Sliding and Initial Pressure on the Dynamics of Detonation Waves in Bubbly Liquid

  • I. K. Gimaltdinov
  • S. A. LepikhinEmail author
HEAT AND MASS TRANSFER AND PHYSICAL GASDYNAMICS
  • 2 Downloads

Abstract

The dynamics of detonation waves in chemically active bubbly liquid is considered based on numeric simulation with consideration of the relative motion of phases. The influence of the parameters of the initial state of the medium (pressure and volume gas content) on the structure and propagation velocity of detonation waves is studied. Comparative analysis with known experimental data is performed.

Notes

FUNDING

This study was supported by the Russian Foundation for Basic Research, project no. 16-01-00432.

REFERENCES

  1. 1.
    Sychev, A.I., Combust., Explos. Shock Waves (Engl. Transl.), 1985, vol. 21, no. 3, p. 365.Google Scholar
  2. 2.
    Sychev, A.I. and Pinaev, A.V., J. Appl. Mech. Tech. Phys., 1986, vol. 27, no. 1, p. 119.ADSCrossRefGoogle Scholar
  3. 3.
    Pinaev, A.V. and Sychev, A.I., Combust., Explos. Shock Waves (Engl. Transl.), 1986, vol. 22, no. 3, p. 360.Google Scholar
  4. 4.
    Pinaev, A.V. and Sychev, A.I., Combust., Explos. Shock Waves (Engl. Transl.), 1987, vol. 23, no. 6, p. 735.Google Scholar
  5. 5.
    Sychev, A.I., Combust., Explos. Shock Waves (Engl. Transl.), 1995, vol. 31, no. 5, p. 577.Google Scholar
  6. 6.
    Sychev, A.I., Tech. Phys., 2015, vol. 60, no. 4, p. 603.CrossRefGoogle Scholar
  7. 7.
    Zhdan, S.A., Combust., Explos. Shock Waves (Engl. Transl.), 2002, vol. 38, no. 3, p. 327.Google Scholar
  8. 8.
    Liapidevskii, V.Yu., Combust., Explos. Shock Waves (Engl. Transl.), 1997, vol. 33, no. 3, p. 331.Google Scholar
  9. 9.
    Shagapov, V.Sh. and Abdrashitov, D.V., Combust., Explos. Shock Waves (Engl. Transl.), 1992, vol. 28, no. 6, p. 654.Google Scholar
  10. 10.
    Shagapov, V.Sh. and Vakhitova, N.K., Combust., Explos. Shock Waves (Engl. Transl.), 1989, vol. 25, no. 6, p. 669.Google Scholar
  11. 11.
    Nigmatulin, R.I., Shagapov, V.Sh., Gimaltdinov, I.K., and Akhmadullin, F.F., Dokl. Phys., 2003, vol. 48, no. 2, p. 75.ADSCrossRefGoogle Scholar
  12. 12.
    Shagapov, V.Sh., Gimaltdinov, I.K., Bayazitova, A.R., and Spevak, D.S., High Temp., 2009, vol. 47, no. 3, p. 424.CrossRefGoogle Scholar
  13. 13.
    Gimaltdinov, I.K. and Kucher, A.M., High Temp., 2014, vol. 52, no. 3, p. 411.CrossRefGoogle Scholar
  14. 14.
    Gimaltdinov, I.K., Levina, T.M., and Stolpovskii, M.V., Neftegaz. Delo, 2017, no. 5, p. 52.Google Scholar
  15. 15.
    Tukhvatullina, R.R. and Frolov, S.M., Gorenie Vzryv, 2017, vol. 10, no. 2, p. 52.Google Scholar
  16. 16.
    Nigmatulin, R.I., Dinamika mnogofaznykh sred (Dynamics of Multiphase Media), Moscow: Nauka, 1987, vol. 1.Google Scholar
  17. 17.
    Nigmatulin, R.I., Shagapov, V.Sh., and Vakhitova, N.K., Sov. Phys. Dokl., 1989, vol. 34, no. 2, p. 98.ADSGoogle Scholar
  18. 18.
    Samarskii, A.A. and Popov, Yu.P., Raznostnye skhemy gazovoi dinamiki (Difference Diagrams of Gas Dynamics), Moscow: Nauka, 1973.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Ufa State Petroleum Technological UniversityUfaRussia
  2. 2.Surgut Institute of Oil and Gas (Branch), Tyumen Industrial UniversitySurgutRussia

Personalised recommendations