Advertisement

High Temperature

, Volume 57, Issue 3, pp 322–328 | Cite as

Effect of Heat Release on a Gas Flow in a Channel with a Variable Cross Section

  • V. M. ShibkovEmail author
PLASMA INVESTIGATIONS

Abstract

The influence of the longitudinal distribution of heat release in a supersonic combustion of propane under the conditions of an unsteady pulsed discharge on the gas flow regime in a rectangular channel with a variable cross section is studiecd. It is shown that, with an increase in the mass flow rate of propane, the thrust arising from the supersonic combustion of a lean hydrocarbon fuel in an expanding aerodynamic channel, the pressure jump in the combustion area, and the air temperature in the closed pressure chamber increase. It is revealed that there is a limiting amount of hydrocarbon fuel that can be burned in a supersonic combustion regime in an expanding rectangular aerodynamic channel with side expansion angles α = β = 5° without transition to a subsonic flow, while the ratio of the exit and entry sections S2/S1 is 12.7. The experimental results are in satisfactory agreement with the data of mathematical modeling with allowance for additional heating of the cold supersonic flow in the region of an unsteady pulsed discharge.

Notes

FUNDING

This work was supported by the Russian Foundation for Basic Research, project no. 18-02-00336.

REFERENCES

  1. 1.
    Teoriya i raschet vozdushno-reaktivnykh dvigatelei. Uchebnik dlya VUZov (Theory and Calculation of Air-Jet Engines: Textbook), Shlyakhtenko, S.M., Ed., Moscow: Mashinostroenie, 1987.Google Scholar
  2. 2.
    Chernyi, G.G., Techeniya gaza s bol’shoi sverkhzvukovoi skorost’yu (Gas Flow with High Supersonic Rate), Moscow: Fizmatlit, 1959.Google Scholar
  3. 3.
    Artemov, O.A., Pryamotochnye vozdushno-reaktivnye dvigateli (raschet kharakteristik) (Ramjet Engines: Performance Calculation), Moscow: Sputnik, 2006.Google Scholar
  4. 4.
    Bondaryuk, M.M. and Il’yashenko, S.M., Pryamotochnye vozdushno-reaktivnye dvigateli (Ramjet Engines), Moscow: Gos. Izd. Oboron. Promyshlennosti, 1958.Google Scholar
  5. 5.
    Zuev, V.S. and Makaron, V.S., Teoriya pryamotochnykh i raketno-pryamotochnykh (aviatsionnykh) dvigatelei (The Theory of Ramjet and Rocket-Ramjet (Aircraft) Engines), Moscow: Mashinostroenie, 1971.Google Scholar
  6. 6.
    Abramovich, G.N., Prikladnaya gazovaya dinamika (Applied Gas Dynamics), Moscow: Nauka, 1976.Google Scholar
  7. 7.
    Bartlmä, F., Gasdynamik der Verbrennung (Gas Dynamics of Combustion), Wien: Springer, 1975.Google Scholar
  8. 8.
    Konstantinovskii, R.S., Shibkov, V.M., and Shibkova, L.V., Kinet. Catal., 2005, vol. 46, no. 6, p. 775.CrossRefGoogle Scholar
  9. 9.
    Starikovskaya, S.M., J. Phys. D: Appl. Phys., 2006, vol. 39, p. R265.ADSCrossRefGoogle Scholar
  10. 10.
    Starikovskii, A.Y., Anikin, N.B., Kosarev, I.N., Mintoussov, E.I., Nudnova, M.M., Rakitin, A.E., Roupassov, D.V., Starikovskaia, S.M., and Zhukov, V.P., J. Propul. Power, 2008, vol. 24, no. 6, p. 1182.CrossRefGoogle Scholar
  11. 11.
    Adamovich, I.V., Lempert, W.R., Rich, J.W., and Utkin, Y.G., J. Propul. Power, 2008, vol. 24, no. 6, p. 1198.CrossRefGoogle Scholar
  12. 12.
    Shibkov, V.M., Aleksandrov, A.F., Chernikov, V.A., Ershov, A.P., and Shibkova, L.V., J. Propul. Power, 2009, vol. 25, no. 1, p. 123.CrossRefGoogle Scholar
  13. 13.
    Alekseev, A.I., Vaulin, D.N., Stepanov, A.I., and Chernikov, V.A., High Temp., 2018, vol. 56, no. 1, p. 20.CrossRefGoogle Scholar
  14. 14.
    Bityurin, V.A., Klimov, A.I., Korshunov, O.V., and Chinnov, V.F., High Temp., 2015, vol. 53, no. 1, p. 21.CrossRefGoogle Scholar
  15. 15.
    Bityurin, V.A., Klimov, A.I., Korshunov, O.V., and Chinnov, V.F., High Temp., 2014, vol. 52, no. 5, p. 621.CrossRefGoogle Scholar
  16. 16.
    Shibkov, V.M., Shibkova, L.V., Gromov, V.G., Karachev, A.A., and Konstantinovskii, R.S., High Temp., 2011, vol. 49, no. 2, p. 155.CrossRefGoogle Scholar
  17. 17.
    Kazantsev, S.Yu., Kononov, I.G., Kossyi, I.A., Tarasova, N.M., and Firsov, K.N., Plasma Phys. Rep., 2009, vol. 35, no. 3, p. 251.ADSCrossRefGoogle Scholar
  18. 18.
    Aleksandrov, N.L., Kindysheva, S.V., Kukaev, E.N., Starikovskaya, S.M., and Starikovskii, A.Yu., Plasma Phys. Rep., 2009, vol. 35, no. 10, p. 867.ADSCrossRefGoogle Scholar
  19. 19.
    Shibkov, V.M. and Shibkova, L.V., Tech. Phys., 2009, vol. 54, no. 10, p. 1467.CrossRefGoogle Scholar
  20. 20.
    Shibkov, V.M. and Shibkova, L.V., Tech. Phys., 2010, vol. 55, no. 1, p. 58.CrossRefGoogle Scholar
  21. 21.
    Aleksandrov, A.F., Shibkov, V.M., and Shibkova, L.V., Moscow Univ. Phys. Bull. (Engl. Transl.), 2008, vol. 63, no. 5, p. 365.Google Scholar
  22. 22.
    Aleksandrov, A.F., Shibkov, V.M., and Shibkova, L.V., Moscow Univ. Phys. Bull. (Engl. Transl.), 2008, vol. 63, no. 6, p. 433.Google Scholar
  23. 23.
    Shibkov, V.M., Aleksandrov, A.F., Ershov, A.P., Timofeev, I.B., Chernikov, V.A., and Shibkova, L.V., Plasma Phys. Rep., 2005, vol. 31, no. 9, p. 795.ADSCrossRefGoogle Scholar
  24. 24.
    Shibkov, V.M., Ershov, A.P., Chernikov, V.A., and Shibkova, L.V., Tech. Phys., 2005, vol. 50, no. 4, p. 455.CrossRefGoogle Scholar
  25. 25.
    Shibkov, V.M., Dvinin, S.A., Ershov, A.P., and Shibkova, L.V., Tech. Phys., 2005, vol. 50, no. 4, p. 462.CrossRefGoogle Scholar
  26. 26.
    Shibkov, V.M., Shibkova, L.V., and Karachev, A.A., High Temp., 2009, vol. 47, no. 5, p. 620.CrossRefGoogle Scholar
  27. 27.
    Aleksandrov, A.F., Kuzovnikov, A.A., and Shibkov, V.M., J. Eng. Phys. Thermophys., 1992, vol. 62, no. 5, p. 519.CrossRefGoogle Scholar
  28. 28.
    Aleksandrov, A.F., Shibkov, V.M., and Shibkova, L.V., High Temp., 2010, vol. 48, no. 5, p. 611.CrossRefGoogle Scholar
  29. 29.
    Zlobin, V.V., Kuzovnikov, A.A., and Shibkov, V.M., Vestn. Mosk. Univ., Ser. 3: Fiz., Astron., 1988, vol. 29, no. 1, p. 89.Google Scholar
  30. 30.
    Shibkov, V.M., High Temp., 1997, vol. 35, no. 5, p. 681.Google Scholar
  31. 31.
    Shibkov, V.M., High Temp., 1997, vol. 35, no. 6, p. 858.Google Scholar
  32. 32.
    Devyatov, A.M., Kuzovnikov, A.A., Lodinev, V.V., and Shibkov, V.M., Vestn. Mosk. Univ., Ser. 3: Fiz., Astron., 1991, vol. 32, no. 2, p. 29.Google Scholar
  33. 33.
    Ershov, A.P., Surkont, O.S., Timofeev, I.B., Shibkov, V.M., and Chernikov, V.A., Teplofiz. Vys. Temp., 2004, vol. 42, no. 4, p. 516.Google Scholar
  34. 34.
    Ershov, A.P., Surkont, O.S., Timofeev, I.B., Shibkov, V.M., and Chernikov, V.A., Teplofiz. Vys. Temp., 2004, vol. 42, no. 5, p. 669.Google Scholar
  35. 35.
    Ershov, A.P., Kalinin, A.V., Surkont, O.S., Timofeev, I.B., Shibkov, V.M., and Chernikov, V.A., High Temp., 2004, vol. 42, no. 6, p. 865.CrossRefGoogle Scholar
  36. 36.
    Kopyl, P.V., Surkont, O.S., Shibkov, V.M., and Shibkova, L.V., Plasma Phys. Rep., 2012, vol. 38, no. 6, p. 503.ADSCrossRefGoogle Scholar
  37. 37.
    Shibkov, V.M., Shibkova, L.V., and Logunov, A.A., Plasma Phys. Rep., 2017, vol. 43, no. 3, p. 373.ADSCrossRefGoogle Scholar
  38. 38.
    Shibkov, V.M., Shibkova, L.V., and Logunov, A.A., Plasma Phys. Rep., 2018, vol. 44, no. 8, p. 754.ADSCrossRefGoogle Scholar
  39. 39.
    Shibkov, V.M., Shibkova, L.V., and Logunov, A.A., Moscow Univ. Phys. Bull. (Engl. Transl.), 2017, vol. 72, no. 3, p. 294.Google Scholar
  40. 40.
    Youngbin Yoon, Donbar, J.M., Huh, H., and Driscoll, J.F., J. Propul. Power, 1996, vol. 12, no. 4, p. 718.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Moscow State UniversityMoscowRussia

Personalised recommendations