Advertisement

High Temperature

, Volume 56, Issue 6, pp 915–920 | Cite as

Chemical Composition of Bio-oil Obtained via Hydrothermal Liquefaction of Arthrospira platensis Biomass

  • M. S. Vlaskin
  • Yu. I. Kostyukevich
  • G. N. Vladimirov
  • N. I. Chernova
  • S. V. Kiseleva
  • A. V. Grigorenko
  • E. N. Nikolaev
  • O. S. Popel
  • A. Z. Zhuk
HEAT AND MASS TRANSFER AND PHYSICAL GASDYNAMICS
  • 18 Downloads

Abstract

The chemical composition of bio-oil obtained from Arthrospira platensis biomass via hydrothermal liquefaction at 240–330°C has been studied with an elemental analysis and Fourier transform ultrahigh resolution mass spectrometry with ionic cyclotron resonance. An increase in temperature leads to an increased bio-oil yield, decreased oxygen, and an increase in the amount of carbon and nitrogen. The weighted Kendrick mass defect histogram showed for the first time that the main nitrogen-containing and oxygen-containing compounds are ON, O2N3, O3N2, ON2, N, and N2. The character of the change in their relative amount in bio-oil with a temperature change is also revealed. The Venn diagram shows the intersection of the sets of molecular formulas found in bio-oil samples obtained at different temperatures. The results may be used to optimize the hydrothermal liquefaction of microalgae and their subsequent processing into motor fuel.

Notes

ACKNOWLEDGMENTS

This work was financially supported by the Russian Foundation for Basic Research (project no. 17-19-01617).

REFERENCES

  1. 1.
    Raslavičius, L., Semenov, V.G., Chernova, N.I., Keršys, A., and Kopeyka, A.K., Renewable Sustainable Energy Rev., 2014, vol. 40, p. 133.CrossRefGoogle Scholar
  2. 2.
    Chernova, N.I., Kiseleva, S.V., and Popel’, O.S., Therm. Eng., 2014, vol. 61, no. 6, p. 399.ADSCrossRefGoogle Scholar
  3. 3.
    Salam, K.A., Velasquez-Orta, S.B., and Harvey, A.P., Renewable Sustainable Energy Rev., 2016, vol. 65, p. 1179.CrossRefGoogle Scholar
  4. 4.
    López Barreiro, D., Zamalloa, C., Boon, N., Vyverman, W., Ronsse, F., Brilman, W., and Prins, W., Bioresour. Technol., 2013, vol. 146, p. 463.CrossRefGoogle Scholar
  5. 5.
    Rodolfi, L., Chini Zittelli, G., Bassi, N., Padovani, G., Biondi, N., Bonini, G., and Tredici, M.R., Biotechnol. Bioeng., 2009, vol. 102, no. 1, p. 100.CrossRefGoogle Scholar
  6. 6.
    Bersh, A.V., Lisitsyn, A.V., Sorokovikov, A.I., Vlaskin, M.S., Mazalov, Yu.A., and Shkol’nikov, E.I., High Temp., 2010, vol. 48, no. 6, p. 794.CrossRefGoogle Scholar
  7. 7.
    Vlaskin, M.S., Grigorenko, A.V., Zhuk, A.Z., Lisi-tsyn, A.V., Sheindlin, A.E., and Shkol’nikov, E.I., High Temp., 2016, vol. 54, no. 3, p. 322.CrossRefGoogle Scholar
  8. 8.
    Lisitsyn, A.V., Dombrovsky, L.A., Mendeleyev, V.Y., Grigorenko, A.V., Vlaskin, M.S., and Zhuk, A.Z., Infrared Phys. Technol., 2016, vol. 77, p. 162.ADSCrossRefGoogle Scholar
  9. 9.
    Vlaskin, M.S., Chernova, N.I., Kiseleva, S.V., Popel’, O.S., and Zhuk, A.Z., hydrothermal liquefaction of microalgae to produce biofuels: state of the art and future prospects, Therm. Eng., 2017, vol. 64, no. 9, p. 627.ADSCrossRefGoogle Scholar
  10. 10.
    Chernova, N.I., Kiseleva, S.V., Vlaskin, M.S., and Rafikova, Y.Y., Renewable energy technologies: enlargement of biofuels list and co-products from microalgae, MATEC Web Conf., 2017, vol. 112, paper no. 10010.Google Scholar
  11. 11.
    Elliott, D.C., Algal Res., 2016, vol. 13, p. 255.CrossRefGoogle Scholar
  12. 12.
    Valdez, P.J., Nelson, M.C., Wang, H.Y., Lin, X.N., and Savage, P.E., Biomass Bioenergy, 2012, vol. 46, p. 317.CrossRefGoogle Scholar
  13. 13.
    Jena, U., Das, K.C., and Kastner, J.R., Bioresour. Technol., 2011, vol. 102, no. 10, p. 6221.CrossRefGoogle Scholar
  14. 14.
    Jazrawi, C., Biller, P., He, Y., Montoya, A., Ross, A.B., Maschmeyer, T., and Haynes, B.S., Algal Res., 2015, vol. 8, p. 15.CrossRefGoogle Scholar
  15. 15.
    Jena, U. and Das, K.C., Energy Fuels, 2011, vol. 25, no. 11, p. 5472.CrossRefGoogle Scholar
  16. 16.
    Toor, S.S., Reddy, H., Deng, S., Hoffmann, J., Spangsmark, D., Madsen, L.B., Holm-Nielsen, J.B., et al., Bioresour. Technol., 2013, vol. 131, p. 413.CrossRefGoogle Scholar
  17. 17.
    Gai, C., Zhang, Y., Chen, W.-T., Zhang, P., and Dong, Y., Energy Convers. Manage., 2015, vol. 96, p. 330.CrossRefGoogle Scholar
  18. 18.
    Kostyukevich, Y., Kononikhin, A., Popov, I., and Nikolaev, E., J. Mass Spectrom., 2015, vol. 50, no. 10, p. 1150.ADSCrossRefGoogle Scholar
  19. 19.
    Zherebker, A., Kostyukevich, Y., Kononikhin, A., Roznyatovsky, V.A., Popov, I., Grishin, Y.K., Perminova, I.V., et al., Analyst, 2016, vol. 141, no. 8, p. 2426.ADSCrossRefGoogle Scholar
  20. 20.
    Zherebker, A., Kostyukevich, Y., Kononikhin, A., Kharybin, O., Konstantinov, A.I., Zaitsev, K.V., Nikolaev, E., et al., Anal. Bioanal. Chem., 2017, vol. 409, no. 9, p. 2477.CrossRefGoogle Scholar
  21. 21.
    Sudasinghe, N., Dungan, B., Lammers, P., Albrecht, K., Elliott, D., Hallen, R., and Schaub, T., Fuel, 2014, vol. 119, p. 47.CrossRefGoogle Scholar
  22. 22.
    Kostyukevich, Y., Vlaskin, M., Vladimirov, G., Zherebker, A., Kononikhin, A., Popov, I., and Nikolaev, E., Eur. J. Mass Spectrom., 2017, vol. 23, no. 2, p. 83.CrossRefGoogle Scholar
  23. 23.
    Chernova, N.I. and Kiseleva, S.V., Int. J. Hydrogen Energy, 2017, vol. 42, no. 5, p. 2861.CrossRefGoogle Scholar
  24. 24.
    Korobkova, T.P., Chernova, N.I., Kiseleva, S.V., and Zaitsev, S.I., RF Patent 2322489, 2008.Google Scholar
  25. 25.
    Zarrouk, C., Contribution to the study of cyanophyceae: Influence of various physical and chemical factors on the growth and photosynthesis of Spirulina maxima (Setch and Gardner) Geitler, Ph.D. Thesis, Paris: Univ. Paris, 1966.Google Scholar
  26. 26.
    Madsen, R.B., Jensen, M.M., and Glasius, M., Sustainable Energy Fuels, 2017, vol. 1, no. 10, p. 2110.Google Scholar
  27. 27.
    Kostyukevich, Y., Solovyov, S., Kononikhin, A., Popov, I., and Nikolaev, E., J. Mass Spectrom., 2016, vol. 51, no. 6, p. 430.ADSCrossRefGoogle Scholar
  28. 28.
    Kostyukevich, Y., Zherebker, A., Kononikhin, A., Popov, I., Perminova, I., and Nikolaev, E., Int. J. Mass Spectrom., 2016, vol. 404, p. 29.CrossRefGoogle Scholar
  29. 29.
    Kostyukevich, Y., Borisova, L., Kononikhin, A., Popov, I., Kukaev, E., and Nikolaev, E., Eur. J. Mass Spectrom., 2016, vol. 22, no. 6, p. 313.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • M. S. Vlaskin
    • 1
  • Yu. I. Kostyukevich
    • 1
    • 2
  • G. N. Vladimirov
    • 1
    • 2
  • N. I. Chernova
    • 1
    • 3
  • S. V. Kiseleva
    • 1
    • 3
  • A. V. Grigorenko
    • 1
  • E. N. Nikolaev
    • 2
  • O. S. Popel
    • 1
  • A. Z. Zhuk
    • 1
  1. 1.Joint Institute for High Temperatures, Russian Academy of SciencesMoscowRussia
  2. 2.Skolkovo Institute of Science and TechnologySkolkovoRussia
  3. 3.Moscow State UniversityMoscowRussia

Personalised recommendations