Advertisement

High Temperature

, Volume 56, Issue 6, pp 890–899 | Cite as

Hyperbolic Model of a Single-Speed, Heat-Conductive Mixture with Interfractional Heat Transfer

  • V. S. SurovEmail author
HEAT AND MASS TRANSFER AND PHYSICAL GASDYNAMICS
  • 12 Downloads

Abstract

A modified generalized equilibrium model of a single-speed, heat-conducting, heterogeneous mixture is proposed; it takes into account interfractional heat transfer. The model equations are analyzed, and their hyperbolicity is demonstrated. The Godunov method with the linear Riemann solver designed for the calculation of mixture flows on curvilinear grids is described.

Notes

REFERENCES

  1. 1.
    Varaksin, A.Yu., High Temp., 2013, vol. 51, no. 3, p. 377.CrossRefGoogle Scholar
  2. 2.
    Surov, V.S., Comput. Math. Math. Phys., 2008, vol. 48, no. 6, p. 1048.MathSciNetCrossRefGoogle Scholar
  3. 3.
    Murrone, A. and Guillard, H., J. Comput. Phys., 2005, vol. 202, p. 664.ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    Wackers, J. and Koren, B., J. Numer. Meth. Fluids, 2005, vol. 47, p. 1337.CrossRefGoogle Scholar
  5. 5.
    Kreeft, J.J. and Koren, B., J. Comput. Phys., 2010, vol. 229, p. 6220.ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Surov, V.S., Mat. Model., 2001, vol. 13, no. 10, p. 27.MathSciNetGoogle Scholar
  7. 7.
    Yeom, G.-S. and Chang, K.-S., Int. J. Heat Mass Transfer, 2010, vol. 53, p. 5073.CrossRefGoogle Scholar
  8. 8.
    Surov, V.S., High Temp., 1996, vol. 34, no. 2, p. 280.Google Scholar
  9. 9.
    Surov, V.S., Chelyabinsk. Fiz.-Mat. Zh., 1997, vol. 6, no. 1, p. 124.Google Scholar
  10. 10.
    Surov, V.S., Tech. Phys., 1998, vol. 43, no. 11, p. 1280.CrossRefGoogle Scholar
  11. 11.
    Saurel, R., Boivin, P., and Lemetayer, O., Comput. Fluids, 2016, vol. 128, p. 53.MathSciNetCrossRefGoogle Scholar
  12. 12.
    Sudarchikov, A.M., High Temp., 2016, vol. 54, no. 6, p. 873.CrossRefGoogle Scholar
  13. 13.
    Kapila, A.K., Schwendeman, D.W., Gambino, J.R., and Henshaw, W.D., Shock Waves, 2015, vol. 25, p. 545.ADSCrossRefGoogle Scholar
  14. 14.
    Surov, V.S., J. Eng. Phys. Thermophys., 2010, vol. 83, no. 3, p. 549.CrossRefGoogle Scholar
  15. 15.
    Surov, V.S., High Temp., 2009, vol. 47, no. 6, p. 870.CrossRefGoogle Scholar
  16. 16.
    Cattaneo, C., C. R. Acad. Sci., 1958, vol. 247, p. 431.Google Scholar
  17. 17.
    Surov, V.S., J. Eng. Phys. Thermophys., 2017, vol. 90, no. 3, p. 575.CrossRefGoogle Scholar
  18. 18.
    Surov, V.S., Therophys. Aeromech., 2017, vol. 24, no. 1, p. 19.ADSCrossRefGoogle Scholar
  19. 19.
    Godunov, S.K., Zabrodin, A.V., Ivanov, M.Ya., Kraiko, A.N., and Prokopov, G.P., Chislennoe reshenie mnogomernykh zadach gazovoi dinamiki (Numerical Solution of Multidimensional Problems of Gas Dynamics), Moscow: Nauka, 1976.Google Scholar
  20. 20.
    Kulikovskii, A.G., Pogorelov, N.V., and Semenov, A.Yu., Matematicheskie voprosy chislennogo resheniya giperbolicheskikh sistem uravnenii (Mathematical Problems of Numerical Solution of Hyperbolic Systems of Equations), Moscow: Fizmatlit, 2012.Google Scholar
  21. 21.
    Toro, E.F., Int. J. Numer. Methods Fluids, 2006, vol. 52, p. 433.ADSCrossRefGoogle Scholar
  22. 22.
    Silin, V.P., Vvedenie v kineticheskuyu teoriyu gazov (Introduction to the Kinetic Theory of Gases), Moscow: Nauka, 1971.Google Scholar
  23. 23.
    Joseph, D.D. and Preziosi, L.P., Rev. Mod. Phys., 1989, vol. 61, no. 1, p. 41.ADSCrossRefGoogle Scholar
  24. 24.
    Tzou, D.Y., Int. J. Heat Mass Transfer, 1993, no. 7, p. 1845.Google Scholar
  25. 25.
    Anderson, C. and Tamma, K.K., Int. J. Numer. Methods Heat Fluid Flow, 1998, vol. 8, no. 1, p. 83.CrossRefGoogle Scholar
  26. 26.
    Levanov, E.I. and Sotskii, E.N., in Matematicheskoe modelirovanie. Nelineinye differentsial’nye uravneniya matematicheskoi fiziki (Mathematical Simulation: Nonlinear Differential Equations of Mathematical Physics), Moscow: Nauka, 1987, p. 155.Google Scholar
  27. 27.
    Christov, C.J. and Jordan, P.M., Phys. Rev. Lett., 2005, vol. 94, p. 154301.ADSCrossRefGoogle Scholar
  28. 28.
    Ostoja-Starzewski, M., Int. J. Eng. Sci., 2009, vol. 47, p. 807.CrossRefGoogle Scholar
  29. 29.
    Wallis, G.B., One-Dimensional Two-Phase Flow, New York: McGraw-Hill, 1969.Google Scholar
  30. 30.
    Surov, V.S., J. Eng. Phys. Thermophys., 2016, vol. 89, no. 5, p. 1227.CrossRefGoogle Scholar
  31. 31.
    Surov, V.S., High Temp., 2009, vol. 47, no. 2, p. 263.CrossRefGoogle Scholar
  32. 32.
    Surov, V.S., J. Eng. Phys. Thermophys., 2010, vol. 83, no. 2, p. 373.CrossRefGoogle Scholar
  33. 33.
    Gubaidullin, A.A., Dudko, D.N., and Urmancheev, S.F., Vychislit. Tekhnol., 2001, vol. 6, no. 3, p. 7.Google Scholar
  34. 34.
    Surov, V.S., J. Eng. Phys. Thermophys., 2015, vol. 88, no. 3, p. 652.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.South Ural State University (National Research University)ChelyabinskRussia

Personalised recommendations