Advertisement

High Temperature

, Volume 56, Issue 6, pp 900–909 | Cite as

Local Heat Transfer in Diesel Combustion Chamber Converted to Operate on Natural Gas and Hydrogen

  • R. Z. KavtaradzeEmail author
  • A. A. ZelentsovEmail author
  • V. M. Krasnov
HEAT AND MASS TRANSFER AND PHYSICAL GASDYNAMICS

Abstract

The conversion of diesel engines into gas engines is a promising way to solve environmental and energy problems. In this paper, we first posed and solved the problem of nonstationary local heat transfer in a diesel combustion chamber converted to run on natural gas and hydrogen. The main characteristics of the working process and local heat transfer in the converted engines with respect to the used alternative fuel are studied by 3D modeling of the internal cylindrical processes and the thermal state of the pistons. The measurements of nonstationary pressure in the cylinder and the local temperatures of the piston on a running engine are used to verify the mathematical models. It is established that the features of the working process, due to the transition to forced ignition of a homogeneous combustible mixture, significantly affect the magnitude and nature of the change and the distribution of local heat loads on the piston surface. Based on comparative analysis of the thermal state of the pistons of converted engines, practical recommendations are issued to ensure the efficient conversion of diesel engines to operate on gas fuels.

Notes

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation for Basic Research, project no. 18-08-00275-а.

REFERENCES

  1. 1.
    Basshuysen, R. and Schäfer, F., Handbuch Verbrennungsmotor: Grundlagen, Komponenten, Systeme, Perspektiven (Manual on Combustion Engine: Fundamentals, Components, Systems, Perspectives), Wiesbaden: Vieweg, 2012, 6th ed.Google Scholar
  2. 2.
    Eichlseder, H. and Klell, M., Wasserstoff in der Fahrzeugtechnik: Erzeugung, Speicherung, Anwendung (Hydrogen in Vehicle Technology: Generation, Storage, Application), Wiesbaden: Vieweg, 2008.Google Scholar
  3. 3.
    Lieuwen, T., Yang, V., and Yetter, R., Synthesis Gas Combustion: Fundamentals and Applications, New York: CRC, 2010.Google Scholar
  4. 4.
    Kavtaradze, R.Z., Teplofizicheskie protsessy v dizelyakh, konvertirovannykh na prirodnyi gaz i vodorod (Thermophysical Processes in Diesel Engines Converted to Natural Gas and Hydrogen), Moscow: Mosk. Gos. Tekh. Univ. im. N.E. Baumana, 2011.Google Scholar
  5. 5.
    Energieprognose 2001: Potential der Öl- und Gasvorräte (Energy Forecast 2001: Potential of Oil and Gas Reserves), Exxon Mobil Central Europe Holding, 2002.Google Scholar
  6. 6.
    Kavtaradze, R.Z., Zeilinger, K., and Zitzler, G., Teplofiz. Vys. Temp., 2005, vol. 43, no. 6, p. 947.Google Scholar
  7. 7.
    Kavtaradze, R.Z., Teoriya porshnevykh dvigatelei. Spetsial’nye glavy (Theory of Piston Engines: Special Chapters), Moscow: Mosk. Gos. Tekh. Univ. im. N.E. Baumana, 2016.Google Scholar
  8. 8.
    Kavtaradze, R.Z., Natriashvili, T.M., and Zelentsov, A.A., Ignition delay and emission of the noxious substances in double-fuel engines working on the natural gas and syngases, in Innovative Methods for Improvement of Technical, Economic and Ecological Efficiency of Motor Cars, New York: NOVA, 2015, p. 109.Google Scholar
  9. 9.
    Francfort, J., Hydrogen internal combustion engine (ICE) vehicle testing activities, in Proc. SAE World Congress & Exhibition, Detroit, MI, 2006, paper no. 2006-01-0433.Google Scholar
  10. 10.
    Dużyński, A., Gas engines, in Proc. VI Int. Sci. Conf., Czestochowa, 2003.Google Scholar
  11. 11.
    Merker, G., Schwarz, Ch., and Teichmann, R., Grundlagen Verbrennungsmotoren: Funktionsweise, Simulation, Messtechnik (Fundamentals of Internal Combustion Engines: Mode of Operation, Simulation, Measurement Technology), Wiesbaden: Springer, 2016, 6th ed.Google Scholar
  12. 12.
    Kavtaradze, R.Z., Lokal’nyi teploobmen v porshnevykh dvigatelyakh (Local Heat Transfer in Piston Engines), Moscow: Mosk. Gos. Tekh. Univ. im. N.E. Baumana, 2016.Google Scholar
  13. 13.
    Kavtaradze, R.Z., Gaivoronskii, A.I., Onishchenko, D.O., Fedorov, V.A., and Shibanov, A.V., Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, 2007, special issue, p. 70.Google Scholar
  14. 14.
    Kavtaradze, R.Z., Gaivoronskii, A.I., Fedorov, V.A., Onishchenko, D.O., and Shibanov, A.V., High Temp., 2007, vol. 45, no. 5, p. 673.CrossRefGoogle Scholar
  15. 15.
    FIRE. Users’ Manual Version 2016, Graz: AVL, 2016.Google Scholar
  16. 16.
    Kavtaradze, R., Zelentsov, A., Gladyshev, S., Kavtaradze, Z., and Onishchenko, D., Heat insulating effect of soot deposit on local transient heat transfer in diesel engine combustion chamber, SAE Int. Pap., 2012, 2012-01-1217.Google Scholar
  17. 17.
    Kavtaradze, R.Z. and Sergeev, S.S., High Temp., 2014, vol. 52, no. 2, p. 282.CrossRefGoogle Scholar
  18. 18.
    Kavtaradze, R.Z., Probl. Mashinostr. Nadezhnosti Mash., 2016, vol. 45, no. 4, p. 20.Google Scholar
  19. 19.
    Kavtaradze, R.Z., Onishchenko, D.O., Zinov’ev, I.A., and Golosov, A.S., Izv. Ross. Akad. Nauk, Energ., 2016, no. 5, p. 152.Google Scholar
  20. 20.
    Kavtaradze, R.Z., Onishchenko, D.O., Zelentsov, A.A., and Sergeev, S.S., Int. J. Heat Mass Transfer, 2009, no. 52, p. 4308.Google Scholar
  21. 21.
    Tatschl, R., Schneider, J., Basara, D., Brohmer, A., Mehring, A., and Hanjalić, K., Progress in the 3D-CFD calculation of the gas and water side heat transfer in engines, in Verfahren 10 Tagung der Arbeitsprozess des Verbrennungsmotors (Proc. 10th Meeting on the Working Process of the Internal Combustion Engine), Graz, 2005.Google Scholar
  22. 22.
    Popovać, M. and Hanjalić, K., Compound wall treatment for rans computation of complex turbulent flow, in Proc. 3rd MIT Conf., Boston: USA, 2005, p. 1.Google Scholar
  23. 23.
    Savitskii, V.D., Dvigateli Vnutr. Sgoraniya, 2002, no. 1, p. 19.Google Scholar
  24. 24.
    Smygalina, A.E., Zaichenko, V.M., Ivanov, M.F., and Kiverin, A.D., Izv. Ross. Akad. Nauk, Energ., 2015, no. 2, p. 120.Google Scholar
  25. 25.
    Schüers, A., Alois, A., Fickel, H.Ch., Preis, M., and Artmann, R., Motortech. Z., 2002, no. 2, p. 98.Google Scholar
  26. 26.
    Mishchenko, A.I., Primenenie vodoroda dlya avtomobil’nyh dvigatelej (Application of Hydrogen for Automobile Engines), Kiev: Naukova dumka, 1984.Google Scholar
  27. 27.
    Prihod’kov, K.V., Bastrakov, A.M., and Ryazanova, T.N., Izv. Volgograd. Gos. Tekh. Univ., 2013 no. 12, p. 37.Google Scholar
  28. 28.
    Kavtaradze, R.Z., Onishchenko, D.O., Golosov, A.S., and Shibanov, A.V., Transport Al’tern. Topl., 2016, no. 5, p. 31.Google Scholar
  29. 29.
    Nikolaenko, V.A. and Karpuhin, V.I., Izmerenie temperatury s pomoshch’yu obluchennykh materialov (Temperature Measurement with Irradiated Materials), Moscow: Energoatomizdat, 1986.Google Scholar
  30. 30.
    Kruglov, M.G., Grishin, Yu.A., and Kavtaradze, R.Z., Izv. Vyssh. Uchebn. Zaved., Mashinostr., 1981, no. 9, p. 75.Google Scholar
  31. 31.
    Leont’ev, A.I., Kavtaradze, R.Z., Onishchenko, D.O., Golosov, A.S., and Pankratov, S.A., High Temp., 2016, vol. 54, no. 1, p. 105.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Bauman Moscow State Technical UniversityMoscowRussia

Personalised recommendations