High Temperature

, Volume 56, Issue 6, pp 938–940 | Cite as

Mechanical Properties of Titanium Diboride Films under the Impact of Picosecond Shock Loads

  • S. I. Ashitkov
  • P. S. Komarov
  • E. V. Struleva


In this paper, we studied the shock wave phenomena generated by laser pulses in a film sample of titanium diboride with a thickness of 1 μm by interferometry in the picosecond range. The splitting of the shock wave into elastic and plastic waves with a compression pressure of 43 GPa behind the front of the elastic precursor is recorded. The values of shear and bulk strength at a deformation rate of 8 × 108 s–1 are determined.



This work was supported by the Russian Science Foundation, project no. 14-50-00124.


  1. 1.
    Kanel, G.I., Zaretsky, E.B., Razorenov, S.V., Ashitkov, S.I., and Fortov, V.E., Phys.—Usp., 2017, vol. 60, no. 5, p. 490.ADSCrossRefGoogle Scholar
  2. 2.
    Dandekar, D.P. and Benfanti, D.C., J. Appl. Phys., 1993, vol. 73, p. 673.ADSCrossRefGoogle Scholar
  3. 3.
    Zhang, Y., Fukuoka, K., Kikuchi, M., Kodama, M., Shibata, K., and Mashimo, T., Int. J. Impact Eng., 2005, vol. 32, p. 643.CrossRefGoogle Scholar
  4. 4.
    Andrievskii, R.A, Kalinnikov, G.V., Kobelev, N.P., Soifer, Ya.M., and Shtanskii, D.V., Phys. Solid State, 1997, vol. 39, no. 10, p. 1661.ADSCrossRefGoogle Scholar
  5. 5.
    Herr, W., Matthes, B., Broszeit, E., and Kloos, K.H., Mater. Sci. Eng., A, 1991, vol. 140, p. 647.CrossRefGoogle Scholar
  6. 6.
    Hammer, P., Steiner, A., Villa, R., Baker, M., Gibson, P.N., Haupt, J., and Gissler, W., Surf. Coat. Technol., 1994, vols. 68–69, p. 194.CrossRefGoogle Scholar
  7. 7.
    Ashitkov, S.I., Agranat, M.B., Kanel’, G.I., Komarov, P.S., and Fortov, V.E., JETP Lett., 2010, vol. 92, no. 8, p. 516.ADSCrossRefGoogle Scholar
  8. 8.
    Whitley, V.H., McGrane, S.D., Eakins, D.E., Bolme, C.A., Moore, D.S., and Bingert, J.F., J. Appl. Phys., 2011, vol. 109, 013505.ADSCrossRefGoogle Scholar
  9. 9.
    Crowhurst, J.C., Armstrong, M.R., Knight, K.B., Zaug, J.M., and Behymer, E.M., Phys. Rev. Lett., 2011, vol. 107, 144302.ADSCrossRefGoogle Scholar
  10. 10.
    Ashitkov, S.I., Komarov, P.S., Struleva, E.V., Agranat, M.B., and Kanel, G.I., JETP Lett., 2015, vol. 101, no. 4, p. 276.ADSCrossRefGoogle Scholar
  11. 11.
    Ashitkov, S.I., Komarov, P.S., Ovchinnikov, A.V., Struleva, E.V., and Agranat, M.B., Quantum Electron., 2013, vol. 43, no. 3, p. 242.ADSCrossRefGoogle Scholar
  12. 12.
    Zhakhovskii, V.V. and Inogamov, N.A., JETP Lett., 2010, vol. 92, no. 8, p. 521.ADSCrossRefGoogle Scholar
  13. 13.
    Inogamov, N.A., Zhakhovskii, V.V., Khokhlov, V.A., and Shepelev, V.V., JETP Lett., 2011, vol. 93, no. 4, p. 226.ADSCrossRefGoogle Scholar
  14. 14.
    Rosenberg, Z., J. App. Phys., 1994, vol. 76, p. 1543.ADSCrossRefGoogle Scholar
  15. 15.
    Kanel’, G.I., J. Appl. Mech. Tech. Phys., 2001, vol. 42, no. 2, p. 358.ADSCrossRefGoogle Scholar
  16. 16.
    Cheng, T. and Li, W., J. Am. Ceram. Soc., 2015, vol. 98, no. 1, p. 190.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • S. I. Ashitkov
    • 1
  • P. S. Komarov
    • 1
  • E. V. Struleva
    • 1
  1. 1.Joint Institute for High Temperatures, Russian Academy of SciencesMoscowRussia

Personalised recommendations