Advertisement

High Temperature

, Volume 56, Issue 5, pp 774–782 | Cite as

Prospective Schemes of Aluminum–Hydrogen Thermal Power Plants

  • M. S. VlaskinEmail author
  • A. Z. Zhuk
  • V. I. MiroshnichenkoEmail author
  • A. E. Sheindlin
NEW ENERGETICS
  • 18 Downloads

Abstract

Various methods are considered for the production of useful electric and thermal energy based the use of a steam–hydrogen mixture with parameters corresponding to the parameters upon the exit of hydrothermal oxidation of aluminum from an experimental reactor developed earlier at the Joint Institute for High Temperatures of the Russian Academy of Sciences. The appropriate types of basic power-generating equipment that operate on hydrogen are chosen. The main thermodynamic parameters of the schemes of thermal power plants are analyzed, and their thermodynamic efficiency is determined.

Notes

ACKNOWLEDGMENTS

This work was supported by the Russian Science Foundation and was carried out within the project “Fundamental Principles of the Energy of the Future” (grant no. 14-50-00124). We are grateful to S.A. Medin for the useful discussion of the results of this work.

REFERENCES

  1. 1.
    Ambaryan, G.N., Vlaskin, M.S., Dudoladov, A.O., Meshkov, E.A., Zhuk, A.Z., and Shkolnikov, E.I., Int. J. Hydrogen Energy, 2016, vol. 41, no. 39, p. 17216.CrossRefGoogle Scholar
  2. 2.
    Dudoladov, A.O., Buryakovskaya, O.A., Vlaskin, M.S., Zhuk, A.Z., and Shkolnikov, E.I., Int. J. Hydrogen Energy, 2016, vol. 41, no. 4, p. 2230.CrossRefGoogle Scholar
  3. 3.
    Auner, N. and Holl, S., Energy, 2006, vol. 31, nos. 10–11, p. 1395.CrossRefGoogle Scholar
  4. 4.
    Mignard, D. and Pritchard, C., Int. J. Hydrogen Energy, 2007, vol. 32, no. 18, p. 5039.CrossRefGoogle Scholar
  5. 5.
    Varshavskii, I.L., Energoakkumuliruyushchie veshchestva i ikh ispol’zovanie (Energy Storage Substances and Their Use), Kiev: Naukova Dumka, 1980.Google Scholar
  6. 6.
    Vlaskin, M.S., Shkolnikov, E.I., Lisicyn, A.V., Bersh, A.V., and Zhuk, A.Z., Int. J. Hydrogen Energy, 2010, vol. 35, no. 5, p. 1888.CrossRefGoogle Scholar
  7. 7.
    Bersh, A.V., Lisitsyn, A.V., Sorokovikov, A.I., Vlaskin, M.S., Mazalov, Yu.A., and Shkol’nikov, E.I., High Temp., 2010, vol. 48, no. 6, p. 866.CrossRefGoogle Scholar
  8. 8.
    Vlaskin, M.S., Shkolnikov, E.I., and Bersh, A.V., Int. J. Hydrogen Energy, 2011, vol. 36, no. 11, p. 6484.CrossRefGoogle Scholar
  9. 9.
    Shkolnikov, E.I., Shaitura, N.S., and Vlaskin, M.S., J. Supercrit. Fluids, 2013, vol. 73, p. 10.CrossRefGoogle Scholar
  10. 10.
    Vlaskin, M.S., Grigorenko, A.V., Zhuk, A.Z., Lisitsyn, A.V., Sheindlin, A.E., and Shkol’nikov, E.I., High Temp., 2016, vol. 54, no. 3, p. 322.CrossRefGoogle Scholar
  11. 11.
    IAPWS Industrial Formulation for the Thermodynamic Properties of Water and Steam, Colorado: Int. Assoc. Properties of Water and Steam, Thermophys. Properties Div., NIST, 1997.Google Scholar
  12. 12.
    Belov, G.V., Iorish, V.S., and Yungman, V.S., High Temp., 2000, vol. 38, no. 2, p. 191.CrossRefGoogle Scholar
  13. 13.
    Vlaskin, M.S., Shkol’nikov, E.I., Lisitsyn, A.V., and Bersh, A.V., Therm. Eng., 2010, vol. 57, no. 9, p. 794.ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Joint Institute for High Temperatures, Russian Academy of SciencesMoscowRussia

Personalised recommendations