High Temperature

, Volume 56, Issue 5, pp 648–651 | Cite as

Characteristics of Tantalum Ablation under the Impact of a Femtosecond Laser

  • E. V. Struleva
  • P. S. Komarov
  • S. I. Ashitkov


We have studied tantalum ablation under a single impact by 80-fs laser pulses using interference microscopy with a temporal resolution and scanning electron microscopy. The ablation plume structure and the crater morphology reveal different mechanisms of substance removal, which depend on the laser pulse energy density. We have measured the thresholds of the spall and fragmentation ablation types and determined the nonmonotonous dependence of the crater depth on the energy density.



  1. 1.
    Anisimov, S.I. and Luk’yanchuk, B.S., Phys.—Usp., 2002, vol. 45, no. 3, p. 293.CrossRefGoogle Scholar
  2. 2.
    Sokolowski-Tinten, K., Bialkowski, J., Cavalleri, A., Von der Linde, D., Oparin, A., Meyer-ter-Vehn, J. and Anisimov, S.I., Phys. Rev. Lett., 1998, vol. 81, p. 224.ADSCrossRefGoogle Scholar
  3. 3.
    Ivanov, D.S. and Zhigilei, L.V., Phys. Rev. B: Condens. Matter Mater. Phys., 2003, vol. 68, 064114.ADSCrossRefGoogle Scholar
  4. 4.
    Bulgakova, N.M., Stoian, R., Rosenfeld, A., Hertel, I.V., and Campbell, E.B., Phys. Rev. B: Condens. Matter Mater. Phys., 2004, vol. 69, 054102.ADSCrossRefGoogle Scholar
  5. 5.
    Agranat, M.B., Anisimov, S.I., Ashitkov, S.I., Zhakhovskii, V.V., Inogamov, N.A., Nishihara, K., Petrov, Yu.V., Khokhlov, V.A., and Fortov, V.E., Appl. Surf. Sci., 2007, vol. 253, no. 15, p. 6276.ADSCrossRefGoogle Scholar
  6. 6.
    Povarnitsyn, M.E., Itina, T.E., Sentis, M., Khishchenko, K.V., and Levashov, P.R., Phys. Rev. B: Condens. Matter Mater. Phys., 2007, vol. 75, no. 23, 235414.ADSCrossRefGoogle Scholar
  7. 7.
    Inogamov, N.A., Zhakhovskii, V.V., Ashitkov, S.I., Petrov, Yu.V., Agranat, M.B., Anisimov, S.I., Nishikhara, K., and Fortov, V.E., J. Exp. Theor. Phys., 2008, vol. 107, no. 1, p. 1.ADSCrossRefGoogle Scholar
  8. 8.
    Zhao, X. and Shin, Y.C., Appl. Surf. Sci., 2013, vol. 283, p. 94.ADSCrossRefGoogle Scholar
  9. 9.
    Ashitkov, S.I., Inogamov, N.A., Zhakhovskii, V.V., Emirov, Yu.N., Agranat, M.B., Oleinik, I.I., Anisimov, S.I., and Fortov, V.E., JETP Lett., 2012, vol. 95, no. 4, p. 176.ADSCrossRefGoogle Scholar
  10. 10.
    Vorobyev, A.Y. and Guo, C., Phys. Rev. B: Condens. Matter Mater. Phys., 2005, vol. 72, 195422.ADSCrossRefGoogle Scholar
  11. 11.
    Romashevskiy, S.A., Agranat, M.B., and Dmitriev, A.S., High Temp., 2016, vol. 54, no. 3, p. 461.CrossRefGoogle Scholar
  12. 12.
    Ionin, A.A., Kudryashov, S.I., and Samokhin, A.A., Phys.—Usp., 2017, vol. 60, no. 2, p. 149.ADSCrossRefGoogle Scholar
  13. 13.
    Wu, C. and Zhigilei, L.V., Appl. Phys. A, 2014, vol. 114, p. 11.ADSCrossRefGoogle Scholar
  14. 14.
    Bulgakova, N.M. and Bourakov, I.M., Appl. Surf. Sci., 2002, vol. 197, p. 41.ADSCrossRefGoogle Scholar
  15. 15.
    Ionin, A.A., Kudryashov, S.I., Seleznev, L.V., Sinitsyn, D.V., Bunkin, A.F., Lednev, V.N., and Pershin, S.M., J. Exp. Theor. Phys., 2013, vol. 116, no. 3, p. 347.ADSCrossRefGoogle Scholar
  16. 16.
    Artyukov, I.A., Zayarniy, D.A., Ionin, A.A., Kudrya-shov, S.I., Makarov, S.V., and Saltuganov, P.N., JETP Lett., 2014, vol. 99, no. 1, p. 51.ADSCrossRefGoogle Scholar
  17. 17.
    Ashitkov, S.I., Komarov, P.S., Struleva, E.V., Inogamov, N.A., Agranat, M.B., Kanel, G.I., and Khishchenko, K.V., J. Phys.: Conf. Ser., 2015, vol. 653, 012001.Google Scholar
  18. 18.
    Ashitkov, S.I., Komarov, P.S., Struleva, E.V., Inogamov, N.A., and Agranat, M.B., J. Phys.: Conf. Ser., 2018, vol. 946, 012002.Google Scholar
  19. 19.
    Andreev, N.E., Veisman, M.E., Efremov, V.P., and Fortov, V.E., High Temp., 2003, vol. 41, no. 5, p. 594.CrossRefGoogle Scholar
  20. 20.
    Loktionov, E.Yu., Ovchinnikov, A.V., Protasov, Yu.S., Protasov, Yu.Yu., and Sitnikov, D.S., High Temp., 2014, vol. 52, no. 1, p. 132.CrossRefGoogle Scholar
  21. 21.
    Agranat, M.B., Ashitkov, S.I., Ivanov, A.A., Konyashchenko, A.V., Ovchinnikov, A.V., and Fortov, V.E., Quantum Electron., 2004, vol. 34, no. 6, p. 506.ADSCrossRefGoogle Scholar
  22. 22.
    Temnov, V.V., Zhou, P., and Linde, D., J. Opt. Soc. Am., 2006, vol. 23, no. 9, p. 1954.ADSCrossRefGoogle Scholar
  23. 23.
    Agranat, M.B., Andreev, H.E., Ashitkov, S.I., Veisman, M.E., Levashov, P.R., Ovchinnikov, A.V., Sitnikov, D.S., Fortov, V.E., and Khishchenko, K.V., JETP Lett., 2007, vol. 85, no. 6, p. 271.ADSCrossRefGoogle Scholar
  24. 24.
    Inogamov, N.A., Zhakhovskii, V.V., Ashitkov, S.I., Khokhlov, V.A., Petrov, Yu.V., Komarov, P.S., Agranat, M.B., Anisimov, S.I., and Nishihara, K., Appl. Surf. Sci., 2009, vol. 255, no. 24, p. 9712.ADSCrossRefGoogle Scholar
  25. 25.
    Liu, J.M., Opt. Lett., 1982, vol. 7, no. 5, p. 196.ADSCrossRefGoogle Scholar
  26. 26.
    Kikoin, I.K., Tablitsa fizicheskikh velichin. Spravochnik (Table of Physical Quantities: Handbook), Moscow: Atomizdat, 1976.Google Scholar
  27. 27.
    Fortov, V.E., Dremin, A.N., and Leont’ev, A.A., Teplofiz. Vys. Temp., 1975, vol. 13, no. 5, p. 1072.Google Scholar
  28. 28.
    Ohse, R.W. and Tippelskirch, H., High Temp.—High Pressures, 1977, vol. 9, p. 367.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • E. V. Struleva
    • 1
  • P. S. Komarov
    • 1
  • S. I. Ashitkov
    • 1
  1. 1.Joint Institute for High Temperatures, Russian Academy of SciencesMoscowRussia

Personalised recommendations