Advertisement

High Temperature

, Volume 56, Issue 5, pp 685–688 | Cite as

Evaluation of Viscosity of Bi–Pb Melt (56.5%–43.5%) by the Width of a Weak Shock Wave

  • A. S. Savinykh
  • G. V. Garkushin
  • G. I. Kanel’Email author
  • S. V. Razorenov
THERMOPHYSICAL PROPERTIES OF MATERIALS
  • 11 Downloads

Abstract

Experimental evaluation of the viscosity of 56.5% Bi–43.5% Pb eutectic melt at 150°С in a pressure range from 3 to 32 GPa on the basis of measurement of the shock wave width has been carried out. It was found that melt viscosity increases by 3–4 orders of magnitude under compression as compared to standard measurements at atmospheric pressure.

Notes

ACKNOWLEDGMENTS

This research was supported by the grant of Russian Science Foundation (project no. 14-50-00124).

REFERENCES

  1. 1.
    Kutateladze, S.S., Borishanskii, V.M., Novikov, I.I., and Fedynskii, O.S., Zhidkometallicheskie teplonositeli (Liquid Metal Coolants), Moscow: Atomizdat, 1958.Google Scholar
  2. 2.
    Chirkin, V.S., Teplofizicheskie svoistva materialov yadernoi tekhniki. Spravochnik (Thermophysical Properties of Nuclear Engineering Materials: Handbook), Moscow: Atomizdat, 1968.Google Scholar
  3. 3.
    Morita, K., Sobolev, V., and Flad, M., J. Nucl. Mater., 2007, vol. 362, p. 227.ADSCrossRefGoogle Scholar
  4. 4.
    Popel’, P.S., Yagodin, D.A., Mozgovoi, A.G., and Pokrasin, M.A., High Temp., 2010, vol. 48, no. 2, p. 181.CrossRefGoogle Scholar
  5. 5.
    Sobolev, V., J. Nucl. Mater., 2007, vol. 362, p. 235.ADSCrossRefGoogle Scholar
  6. 6.
    Sobolev, V.P., Schuurmans, P., and Benamati, G., J. Nucl. Mater., 2008, vol. 376, p. 358.ADSCrossRefGoogle Scholar
  7. 7.
    Plevachuk, Yu., Sklyarchuk, V., Eckert, S., and Gerbeth, G., J. Nucl. Mater., 2008, vol. 373, p. 335.ADSCrossRefGoogle Scholar
  8. 8.
    Guzachev, M.A., Konstantinova, N.Yu., Popel, P.S., and Mozgovoy, A.G., Thermophys. Aeromech., 2011, vol. 18, no. 3, p. 469.ADSCrossRefGoogle Scholar
  9. 9.
    Assael, M.J., Mihailidou, E.K., Brillo, J., Stankus, S.V., Wu, J.T., and Wakeham, W.A., J. Phys. Chem. Ref. Data, 2012, vol. 41, no. 3, 033103.ADSCrossRefGoogle Scholar
  10. 10.
    Ceotto, D., High Temp., 2015, vol. 53, no. 3, p. 370.CrossRefGoogle Scholar
  11. 11.
    Brazhkin, V.V. and Lyapin, A.G., Phys.—Usp., 2000, vol. 43, no. 5, p. 493.ADSCrossRefGoogle Scholar
  12. 12.
    Smylie, D.E., Brazhkin, V.V., and Palmer, A., Phys.—Usp., 2009, vol. 52, no. 1, p. 96.ADSCrossRefGoogle Scholar
  13. 13.
    Zel’dovich, Ya.B. and Raizer, Yu.P., Fizika udarnykh voln i vysokotemperaturnykh gidrodinamicheskikh yavlenii (Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena), Moscow: Nauka, 1966.Google Scholar
  14. 14.
    Kanel’, G.I., Savinykh, A.S., Garkushin, G.V., and Razorenov, S.V., High Temp., 2017, vol. 55, no. 3, p. 365.CrossRefGoogle Scholar
  15. 15.
    Savinykh, A.S., Garkushin, G.V., Kanel’, G.I., and Razorenov, S.V., Chebyshev. Sb., 2017, vol. 18, no. 3, p. 461.Google Scholar
  16. 16.
    Stankus, S.V., Khairulin, R.A., Mozgovoy, A.G., Roshchupkin, V.V., and Pokrasin, M.A., J. Phys.: Conf. Ser., 2008, vol. 98, 062017.Google Scholar
  17. 17.
    Kanel’, G.I., Razorenov, S.V., Utkin, A.V., and Fortov, V.E., Udarno-volnovye yavleniya v kondensirovannykh sredakh (Shock-Wave Phenomena in Condensed Media), Moscow: Yanus-K, 1996.Google Scholar
  18. 18.
    Barker, L.M. and Hollenbach, R.E., J. Appl. Phys., 1972, vol. 43, p. 4669.ADSCrossRefGoogle Scholar
  19. 19.
    Al’tshuler, L.V., Phys.—Usp., 1965, vol. 8, no. 1, p. 52.ADSCrossRefGoogle Scholar
  20. 20.
    Kanel, G.I., Nellis, W.J., Savinykh, A.S., Razorenov, S.V., and Rajendran, A.M., J. Appl. Phys., 2009, vol. 106, 043524.ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • A. S. Savinykh
    • 1
  • G. V. Garkushin
    • 1
  • G. I. Kanel’
    • 1
    Email author
  • S. V. Razorenov
    • 1
  1. 1.Joint Institute of High Temperatures, Russian Academy of SciencesMoscowRussia

Personalised recommendations