Advertisement

High Temperature

, Volume 56, Issue 6, pp 884–889 | Cite as

A Change in the Structure of a Flow under the Action of Highly Inertial Particle when a Hypersonic Heterogeneous Flow Passes over a Body

  • D. L. ReviznikovEmail author
  • A. V. Sposobin
  • I. E. Ivanov
HEAT AND MASS TRANSFER AND PHYSICAL GASDYNAMICS

Abstract

The results of numerical modeling of the gasdynamic interaction between a highly inertial particle and the shock layer are presented. The evolution of the shock-wave and vortex flow pattern that appears when a particle reflected from a streamlined surface passes through a shock wave is analyzed. It is shown that an essential part is played in the formation of a wave flow pattern by a toroidal vortex, which results in the “nonviscous” detachment of the near-axis incident flow from the symmetry axis and its further interaction with the outer flow and the body surface. It is indicated that an intensive pressure wave passes along the streamlined surface, thus creating the conditions for the intensification of convective heat transfer.

Notes

ACKNOWLEDGMENTS

This work was financially supported by the Russian Foundation for Basic Research (projects nos. 15-08-06262a and 18-08-00703a).

REFERENCES

  1. 1.
    Mikhatulin, D.S., Polezhaev, Yu.V., and Reviznikov, D.L., Teplomassoobmen. Termokhimicheskoe i termoerozionnoe razrushenie teplovoi zashchity (Heat and Mass Transfer: Thermochemical and Thermoerosion Destruction of Thermal Protection), Moscow: Yanus-K, 2011.Google Scholar
  2. 2.
    Mikhatulin, D.S., Polezhaev, Yu.V., and Reviznikov, D.L., High Temp., 2001, vol. 39, no. 4, p. 596.CrossRefGoogle Scholar
  3. 3.
    Mikhatulin, D.S., Polezhaev, Yu.V., and Reviznikov, D.L., High Temp., 2003, vol. 41, no. 1, p. 88.CrossRefGoogle Scholar
  4. 4.
    Dombrovsky, L.A., Reviznikov, D.L., and Sposobin, A.V., Int. J. Heat Mass Transfer, 2016, vol. 93, p. 853.CrossRefGoogle Scholar
  5. 5.
    Reviznikov, D.L., Sposobin, A.V., and Dombrovsky, L.A., Comput. Thermal Sci., 2015, vol. 7, no. 4, p. 313.CrossRefGoogle Scholar
  6. 6.
    Vasilevskii, E.B., Osiptsov, A.N., Chirikhin, A.V., and Yakovleva, L.V., J. Eng. Phys. Thermophys., 2001, vol. 74, no. 6, p. 1399.CrossRefGoogle Scholar
  7. 7.
    Volkov, A.N., Tsirkunov, Yu.M., and Oesterle, B., Int. J. Multiphase Flow, 2005, vol. 31, p. 1244.CrossRefGoogle Scholar
  8. 8.
    Reviznikov, D.L., Sposobin, A.V., and Sukharev, T.Yu., High Temp., 2017, vol. 55, no. 3, p. 400.CrossRefGoogle Scholar
  9. 9.
    Varaksin, A.Yu., High Temp., 2015, vol. 53, no. 3, p. 423.CrossRefGoogle Scholar
  10. 10.
    Fleener, W.A. and Watson, R.H., Convective heating in dust-laden hypersonic flows, AIAA Pap. no. 73-761, 1973.Google Scholar
  11. 11.
    Danbar, L.E., Kotni, Dzh.F., and Makmillen, L.D., AIAA J., 1975, vol. 13, no. 7, p. 83.Google Scholar
  12. 12.
    Khouv, D.T. and Shi, U.S., AIAA J., 1977, vol. 15, no. 7, p. 130.Google Scholar
  13. 13.
    Gubanov, E.I., Kosmonavt. Raketostroenie, 2017, no. 2, p. 78.Google Scholar
  14. 14.
    Vladimirov, A.S., Ershov, I.V., Makarevich, G.A., et al., High Temp., 2008, vol. 46, no. 4, p. 512.CrossRefGoogle Scholar
  15. 15.
    Alkhimov, A.P., Klinkov, S.V., Kosarev, V.F., and Fomin, V.M., Kholodnoe gazodinamicheskoe napylenie. Teoriya i praktika (Cold Gas-Dynamic Spraying: Theory and Practice), Moscow: Fizmatlit, 2010.Google Scholar
  16. 16.
    Kulikovskii, A.G., Pogorelov, N.V., and Semenov, A.Yu., Matematicheskie voprosy chislennogo resheniya giperbolicheskikh sistem uravnenii (Mathematical Problems of Numerical Solution of Hyperbolic Systems of Equations), Moscow: Fizmatlit, 2001.zbMATHGoogle Scholar
  17. 17.
    Volkov, K.N. and Emel’yanov, V.N., Techeniya gaza s chastitsami (Gas Flows with Particles), Moscow: Fizmatlit, 2008.Google Scholar
  18. 18.
    Ivanov, I.E. and Kryukov, I.A., Mat. Model., 1996, vol. 8, no. 6, p. 47.MathSciNetGoogle Scholar
  19. 19.
    Vinnikov, V.V., Reviznikov, D.L., and Sposobin, A.V., Mat. Model., 2009, vol. 21, no. 12, p. 89.Google Scholar
  20. 20.
    Ershova, T.V., Mikhatulin, D.S., Reviznikov, D.L., Sposobin, A.V., and Vinnikov, V.V., Comput. Therm. Sci., 2011, vol. 3, no. 1, p. 15.CrossRefGoogle Scholar
  21. 21.
    Henderson, C.B., AIAA J., 1976, vol. 14, no. 6, p. 707.ADSCrossRefGoogle Scholar
  22. 22.
    Holden, M.S., AIAA J., 1966, vol. 4, no. 4, p. 591.CrossRefGoogle Scholar
  23. 23.
    Antonov, A.N., Elizarova, T.G., Pavlov, A.N., and Chetverushkin, B.N., Mat. Model., 1989, vol. 1, no. 1, p. 14.Google Scholar
  24. 24.
    Babarykin, K.V. and Kuz’mina, V.E., in Aerodinamika. Sbornik (Aerodynamics: A Collection of Papers), Miroshin, R.N., Ed., St. Petersburg: St. Petersburg. Gos. Univ., 2005.Google Scholar
  25. 25.
    Zapryagaev, V.I. and Kavun, I.N., J. Appl. Mech. Tech. Phys., 2007, vol. 48, no. 4, p. 492.ADSCrossRefGoogle Scholar
  26. 26.
    Varaksin, A.Yu., High Temp., 2016, vol. 54, no. 3, p. 409.CrossRefGoogle Scholar
  27. 27.
    Varaksin, A.Yu., High Temp., 2017, vol. 55, no. 2, p. 286.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • D. L. Reviznikov
    • 1
    Email author
  • A. V. Sposobin
    • 1
  • I. E. Ivanov
    • 2
  1. 1.Moscow Aviation InstituteMoscowRussia
  2. 2.Moscow State UniversityMoscowRussia

Personalised recommendations