Advertisement

High Temperature

, Volume 56, Issue 5, pp 668–672 | Cite as

Determination of the Thermal Expansion Coefficient of Boron Carbide В13С2

  • S. V. Konovalikhin
  • D. Yu. Kovalev
  • V. I. Ponomarev
THERMOPHYSICAL PROPERTIES OF MATERIALS
  • 5 Downloads

Abstract

X-ray diffraction studies of boron carbide В13С2 crystals were performed within a temperature range of 25–700°C. The thermal expansion coefficeint of boron carbide В13С2 crystals was determined. The temperature dependence of the thermal expansion coefficient was established to have a kink in the temperature region of 420–465°C. The change of thermal expansion anisotropy was revealed. The results of X-ray diffraction indirectly confirm the literature data on the existence of a phase transition in boron carbide in the region of 439–444°C.

Notes

REFERENCES

  1. 1.
    Domnich, V., Reynaud, S., Haber, R.A., and Chhowalla, M., J. Am. Ceram. Soc., 2011, vol. 94, no. 11, p. 3605.CrossRefGoogle Scholar
  2. 2.
    Ponomarev, V.I., Kovalev, I.D., Konovalikhin, S.V., and Vershinnikov, V.I., Crystallogr. Rep., 2013, vol. 58, no. 3, p. 422.ADSCrossRefGoogle Scholar
  3. 3.
    Werheit, H., Solid State Sci., 2016, vol. 60, p. 45.ADSCrossRefGoogle Scholar
  4. 4.
    Thevenot, F., J. Eur. Ceram. Soc., 1990, vol. 6, p. 205.CrossRefGoogle Scholar
  5. 5.
    Mauri, F., Vast, N., and Pickard, Ch.J., Phys. Rev. Lett., 2001, vol. 87, no. 8, p. 85506.ADSCrossRefGoogle Scholar
  6. 6.
    Domnich, V., Gogotsi, Yu., Trenary, M., and Tanaka, T., Appl. Phys. Lett., 2002, vol. 81, no. 20, p. 3783.ADSCrossRefGoogle Scholar
  7. 7.
    Balakrishnarajan, M.M., Pancharatna, D., and Hoffmann, R., New J. Chem., 2007, vol. 31, no. 4, p. 473.CrossRefGoogle Scholar
  8. 8.
    Konovalikhin, S.V. and Ponomarev, V.I., Russ. J. Phys. Chem. A, 2010, vol. 84, no. 8, p. 1445.CrossRefGoogle Scholar
  9. 9.
    Widom, M. and Huhn, W.P., Solid State Sci., 2012, vol. 14, p. 1648.ADSCrossRefGoogle Scholar
  10. 10.
    Yao, S., Huhn, W.P., and Widom, M., Solid State Sci., 2015, vol. 47, p. 2.CrossRefGoogle Scholar
  11. 11.
    Werheit, H., Hoffmann, S., Gerlach, G., Leithe-Jasper, F., and Tanaka, T., in Proc. Sustainable Industrial Processing Summit (SIPS), vol. 8: Composites, Quasi-Crystals, and Nanomaterials, Kongoli, F., Pech-Canul, M., Kalemtas, A., and Werheit, H., Eds., Antalya, 2015, p. 183.Google Scholar
  12. 12.
    Kirfel, A., Gupta, A., and Will, G., Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem., 1979, vol. 35, no. 5, p. 1052.CrossRefGoogle Scholar
  13. 13.
    Gosset, D. and Colin, M., J. Nucl. Mater., 1991, vol. 183, no. 2, p. 161.ADSCrossRefGoogle Scholar
  14. 14.
    Morosin, B. and Kwei, G.H., J. Phys. Chem., 1996, vol. 100, no. 19, p. 8031.CrossRefGoogle Scholar
  15. 15.
    Shteinberg, A.S., Raduchev, V.A., Denisevich, V.V., Ponomarev, V.I., Mamyan, S.G., and Kanaev, I.L., Dokl. Akad. Nauk SSSR, 1991, vol. 317, no. 2, p. 370.Google Scholar
  16. 16.
    Konovalikhin, S.V., Ponomarev, V.I., and Kovalev, D.Yu., in Mater. III Mezhdun. konf. “Neizotermicheskie yavleniya i protsessy: ot teorii teplovogo vzryva k strukturnoi makrokinetike”(Proc III Int. Conf. “Nonisothermal Phenomena and Processes: From the Theory of Thermal Explosion to Structural Macrokinetics”), Chernogolovka: Inst. Struct. Makrokin. Probl. Materialoved, Ross. Alad. Nauk, 2016, p. 120.Google Scholar
  17. 17.
    Yakel, H.L., J. Appl. Crystallogr., 1973, vol. 6, no. 7, p. 471.CrossRefGoogle Scholar
  18. 18.
    Pilladi, T.R., Panneerselvam, G., Anthonysamy, S., and Ganesam, V., Ceram. Int., 2012, vol. 38, p. 3723.CrossRefGoogle Scholar
  19. 19.
    Tsagareishvilin, G.V., Nakashidze, T.G., Jobava, J.Sh., Lomidze, G.P., Khulelidze, D.E., Tsagaraeishvili, D.Sh., and Tsaagareishvili, O.A., J. Less-Common Met., 1986, vol. 117, p. 159.CrossRefGoogle Scholar
  20. 20.
    Kosolapova, T.Ya., Andreeva, T.V., Bartnitskaya, T.S., Gnesin, G.G., Makarenko, G.N., Osipova, I.I., and Prilutskii, E.V., Nemetallicheskie tugoplavkie soedineniya (Nonmetallic Refractory Compounds), Moscow: Metallurgiya, 1985.Google Scholar
  21. 21.
    Pavlova, L.M., Shtern, Yu.I., and Mironov, R.E., High Temp., 2011, vol. 49, no. 3, p. 369.CrossRefGoogle Scholar
  22. 22.
    Son, E.E., High Temp., 2013, vol. 51, no. 3, p. 351.CrossRefGoogle Scholar
  23. 23.
    Kovalev, I.D., Ponomarev, V.I., Konovalikhin, S.V., Kovalev, D.Yu., and Vershinnikov, V.I., Int. J. Self-Propag. High-Temp. Synth., 2015, vol. 24, no. 1, p. 33.CrossRefGoogle Scholar
  24. 24.
    Pease, R.S., Acta Crystallogr., 1952, vol. 5, no. 3, p. 356.CrossRefGoogle Scholar
  25. 25.
    Langreiter, T. and Kahlenberg, V., Crystals, 2015, vol. 5, no. 1, p. 143.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • S. V. Konovalikhin
    • 1
  • D. Yu. Kovalev
    • 1
  • V. I. Ponomarev
    • 1
  1. 1.Merzhanov Institute of Structural Macrokinetics and Materials ScienceChernogolovkaRussia

Personalised recommendations