Advertisement

High Temperature

, Volume 56, Issue 5, pp 758–766 | Cite as

Acoustic Waves in Multifraction Gas Suspensions in the Presence of Phase Transformations

  • D. A. Gubaidullin
  • E. A. TeregulovaEmail author
HEAT AND MASS TRANSFER AND PHYSICAL GASDYNAMICS
  • 8 Downloads

Abstract

The propagation of acoustic waves in gas mixtures with vapor, monodisperse drops, and solid particles of various materials and sizes has been studied. A mathematical model is presented; the dispersion relation, the equilibrium and frozen speeds of sound, and low- and high-frequency asymptotes for the linear attenuation coefficient are deduced; the dispersion curves are calculated. The influence of particle size and disperse phase parameters on dissipation and dispersion of acoustic waves is analyzed for a mixture of air with vapor, water drops, and aluminum and carbon black particles. Fast Fourier transform is used to calculate the pulse perturbations in the studied media.

Notes

REFERENCES

  1. 1.
    Nigmatulin, R.I., Dinamika mnogofaznykh sred (Dynamics of Multiphase Media), Moscow: Nauka, 1987, parts 1 and 2.Google Scholar
  2. 2.
    Varaksin, A.Yu., High Temp., 2013, vol. 51, no. 3, p. 377.CrossRefGoogle Scholar
  3. 3.
    Varaksin, A.Yu., High Temp., 2014, vol. 52, no. 5, p. 752.CrossRefGoogle Scholar
  4. 4.
    Temkin, S., Suspension Acoustics: An Introduction to the Physics of Suspension, Cambridge: Cambridge Univ. Press, 2005.CrossRefzbMATHGoogle Scholar
  5. 5.
    Gumerov, N.A. and Ivandaev, A.I., Zh. Prilk. Mat. Teor. Fiz., 1988, no. 5, p. 115.Google Scholar
  6. 6.
    Gubaidullin, D.A. and Ivandaev, A.I., Zh. Prilk. Mat. Teor. Fiz., 1993, no. 4, p. 75.Google Scholar
  7. 7.
    Gubaidullin, D.A., Fluid Dyn., 2003, vol. 38, no. 5, p. 734.ADSCrossRefGoogle Scholar
  8. 8.
    Nigmatulin, R.I., Ivandaev, A.I., and Gubaidullin, D.A., Dokl. Akad. Nauk SSSR, 1991, vol. 316, no. 3, p. 601.ADSGoogle Scholar
  9. 9.
    Gubaidullin, D.A., Dinamika dvukhfaznykh parogazo-kapel’nykh sred (Dynamics of Two-Phase Vapor and Gas Droplet Environments), Kazan: Kazansk. Mat. O-vo, 1998.Google Scholar
  10. 10.
    Gubaidullin, D.A., Nikiforov, A.A., and Utkina, E.A., Izv. Vyssh. Uchebn. Zaved., Probl. Energ., 2009, nos. 1–2, p. 25.Google Scholar
  11. 11.
    Gubaidullin, D.A., Teregulova, E.A., and Gubaidullina, D.D., High Temp., 2015, vol. 53, no. 5, p. 713.CrossRefGoogle Scholar
  12. 12.
    Gubaidullin, D.A., Nikiforov, A.A., and Utkina, E.A., High Temp., 2011, vol. 49, no. 6, p. 911.CrossRefGoogle Scholar
  13. 13.
    Gubaidullin, D.A., Nikiforov, A.A., and Utkina, E.A., Fluid Dyn., 2011, no. 1, p. 72.Google Scholar
  14. 14.
    Sazhin, S.S., Prog. Energy Combust. Sci., 2006, vol. 32, p. 162.Google Scholar
  15. 15.
    Gaponov, V.A., A package of fast Fourier transformation programs with applications to the simulation of random processes, Preprint of the Inst. Theor. Phys., Sib. Branch, USSR Acad. Nauk, Novosibirsk, 1976, no. 14-76.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Institute of Mechanics and Engineering, Kazan Science Center, Russian Academy of SciencesKazanRussia

Personalised recommendations