Advertisement

High Temperature

, Volume 56, Issue 5, pp 640–647 | Cite as

Nondegenerate Electron Plasma in a Layer in an External Electric Field with a Mirror Boundary Condition

  • N. M. GordeevaEmail author
  • A. A. YushkanovEmail author
PLASMA INVESTIGATIONS
  • 10 Downloads

Abstract

An analytical solution is obtained for the linearized problem on the behavior of collisionless nondegenerate electron plasma in a layer located in an external alternating electric field. It is assumed that the electrons are mirror-reflected from the plasma boundary. The expansion of the solution in eigenfunctions of the corresponding characteristic system is established. The value of the absorption of the electric field energy in the layer is calculated. A case in which the frequency of the external field is close to the plasma frequency is investigated. It is shown that oscillations are observed in the dependence of the absorption on the frequency at frequencies above that of the plasma. These oscillations are associated with the excitation of plasma oscillations in the layer.

Notes

REFERENCES

  1. 1.
    Jones, W.E., Kliewer, K.L., and Fuchs, R., Phys. Rev., 1969, vol. 178, no. 3, p. 1201.ADSCrossRefGoogle Scholar
  2. 2.
    Kondratenko, A.N., Proniknovenie voln v plazmu (Penetration of Waves into Plasma), Moscow: Atomizdat, 1979.Google Scholar
  3. 3.
    Latyshev, A.V., Lesskis, A.G., and Yushkanov, A.A., Teor. Mat. Fiz., 1992, vol. 92, no. 1, p. 127.CrossRefGoogle Scholar
  4. 4.
    Paredes-Juáres, A., Días-Monge, S., Makarov, M.N., and Pérez-Rodríguez, F., JETP Lett., 2009, vol. 90, no. 9, p. 623.ADSCrossRefGoogle Scholar
  5. 5.
    Latyshev, A.V. and Yushkanov, A.A., Quantum Electron., 2015, vol. 45, no. 3, p. 270.ADSCrossRefGoogle Scholar
  6. 6.
    Latyshev, A.V. and Yushkanov, A.A., High Temp., 2017, vol. 55, no. 5, p. 631.CrossRefGoogle Scholar
  7. 7.
    Vlasov, A.A., Zh. Eksp. Teor. Fiz., 1938, vol. 8, no. 3, p. 291.Google Scholar
  8. 8.
    Landau, L.D., On the oscillations of an electron plasma, in Sobranie trudov (Collection of Papers), Moscow: Nauka, 1969, vol. 2, p. 7.Google Scholar
  9. 9.
    Keller, J.M., Fuchs, R., and Kliewer, K.L., Phys. Rev. B: Solid State, 1976, vol. 12, no. 6, p. 2012.ADSCrossRefGoogle Scholar
  10. 10.
    Gokhfel’d, V.M., Gulyanskii, M.A., Kaganov, M.I., and Plyavenek, A.G., Zh. Eksp. Teor. Fiz., 1985, vol. 89, no. 3, p. 985.Google Scholar
  11. 11.
    Latyshev, A.V. and Yushkanov, A.A., Fluid Dyn., 2006, vol. 41, no. 1, p. 161.ADSCrossRefGoogle Scholar
  12. 12.
    Latyshev, A.V. and Yushkanov, A.A., Granichnye zadachi dlya vyrozhdennoi elektronnoi plazmy (Boundary-Value Problems for a Degenerate Electron Plasma), Moscow: Mosk. Gos. Oblast. Univ., 2006.Google Scholar
  13. 13.
    Latyshev, A.V. and Yushkanov, A.A., Zh. Vychislit. Mat. Mat. Fiz., 2001, vol. 41, no. 8, p. 1229.Google Scholar
  14. 14.
    Silin, V.P. and Rukhadze, A.A., Elektromagnitnye svoistva plazmy i plazmopodobnykh sred (Electromagnetic Properties of Plasma and Plasma-Like Media), Moscow: Gosatomizdat, 1961.Google Scholar
  15. 15.
    Kolesnikov, A.F., Stefan–Maxwell relations for multicomponent ambipolar diffusion and thermal-baro diffusion effects in two-temperature plasmas, AIAA Pap. no. 2000-2570, 2000.Google Scholar
  16. 16.
    Kolesnikov, A.F., Mechanism of the ion baro-thermal-diffusion pumping in weakly ionized shock layer, AIAA Pap. no. 2001-2871, 2000.Google Scholar
  17. 17.
    Vedenyapin, V.V., Kineticheskie uravneniya Bol’tsmana i Vlasova (Kinetic Equations of Boltzmann and Vlasov), Moscow: Fizmatlit, 2001.Google Scholar
  18. 18.
    Bobrov, V.B., High Temp., 2017, vol. 55, no. 4, p. 473.CrossRefGoogle Scholar
  19. 19.
    Aleksandrov, A.F., Bogdankevich, L.S., and Rukhadze, A.A., Osnovy elektrodinamiki plazmy (Fundamentals of Plasma Electrodynamics), Moscow: Vysshaya Shkola, 1988.Google Scholar
  20. 20.
    Van Kampen, N.G., Physica, 1957, vol. 23, nos. 6–10, p. 641.ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    Lavrent’ev, M.A. and Shabad, B.V., Metody teorii funktsii kompleksnogo peremennogo (Methods of the Theory of Functions of a Complex Variable), Moscow: Nauka, 1973.Google Scholar
  22. 22.
    Latyshev, A.V. and Yushkanov, A.A., Teor. Mat. Fiz., 1998, vol. 116, no. 2, p. 305.CrossRefGoogle Scholar
  23. 23.
    Lifanov, I.K., Metod singulyarnykh integral’nykh uravnenii i chislennyi eksperiment (v matematicheskoi fizike, aerodinamike, teorii uprugosti i difraktsii voln) (The Method of Singular Integral Equations and Numerical Experiment (in Mathematical Physics, Serodynamics, Theory of Elasticity, and Diffraction of Waves)), Moscow: Yanus, 1995.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Bauman State Technical UniversityMoscowRussia
  2. 2.Moscow State Regional UniversityMoscowRussia

Personalised recommendations