Advertisement

High Temperature

, Volume 56, Issue 5, pp 738–743 | Cite as

Modeling of Heat Mass Transfer in High-Temperature Reacting Flows with Combustion

  • A. S. Askarova
  • S. A. Bolegenova
  • S. A. Bolegenova
  • V. Yu. Maximov
  • M. T. Beketayeva
HEAT AND MASS TRANSFER AND PHYSICAL GASDYNAMICS
  • 6 Downloads

Abstract

A multiprocessor computer system suitable for physical, mathematical, and chemical models, as well as an exact method for the solution of a system of differential equations that describe the actual combustion of a pulverized coal flare, are necessary to study the numerically complex, physicochemical processes occurring in the combustion chambers of power plants. The results of numerical simulation can provide quite a high accuracy. However, the task of setting up a physical and mathematical model with the correct initial and boundary conditions has yet to be completed. In this paper, we studied heat and mass transfer in high-temperature reacting flows during the burning of Karaganda coal in the combustion chamber of an actual power boiler of a thermal power plant in Kazakhstan. The optimal conditions for computational experiments that correspond to real combustion processes are determined.

Notes

ACKNOWLEDGMENTS

This work was supported by the Education and Science Ministry, Kazakhstan, project no. AP05133590.

REFERENCES

  1. 1.
    Vockrodt, S., Leithner, R., Schiller, A., et al., in Proc. 19th German Conf. on Flames, Combustion and Incineration, Berlin: VDI-Berichte, 1999, vol. 1492, p. 93.Google Scholar
  2. 2.
    Messerle, V.E., Ustimenko, A.B., Bolegenova, S.A., et al., Thermophys. Aeromech., 2016, vol. 23, p. 125.ADSCrossRefGoogle Scholar
  3. 3.
    Bekmukhamet, A., Beketayeva, M., Gabitova, Z., et al., J. Appl. Fluid Mech., 2016, vol. 9, no. 2, p. 699.CrossRefGoogle Scholar
  4. 4.
    Askarova, A.S., Bolegenova, S.A., Maksimov, V.Yu., Bekmukhamet, A., Beketaeva, M.T., and Gabitova, Z.Kh., High Temp., 2015, vol. 53, no. 5, p. 751.CrossRefGoogle Scholar
  5. 5.
    Heierle, E., Manatbayev, R., Yergaliyeva, A., et al., Bulg. Chem. Commun., 2016, vol. 48, p. 260.Google Scholar
  6. 6.
    Bolegenova, S. Maximov, V., et al., IERI Procedia, 2014, vol. 10, p. 252.CrossRefGoogle Scholar
  7. 7.
    Gorokhovski, M., Chtab-Desportes, A., Voloshina, I., and Askarova, A., in AIP Conf. Proc., Xi’an, 2010, vol. 1207, p. 66.Google Scholar
  8. 8.
    Zarubin, V.S., Kuvyrkin, G.N., and Savel’eva, I.Yu., High Temp., 2016, vol. 54, no. 6, p. 831.CrossRefGoogle Scholar
  9. 9.
    Askarova, A., Bolegenova, S., Bolegenova, S., Bekmukhamet, A., Maximov, V., and Beketayeva, M., Int. J. Mech., 2013, vol. 7, p. 343.Google Scholar
  10. 10.
    Askarova, A., Messerle, V., Ustimenko, A., et al., Thermophys. Aeromech., 2014, vol. 21, p. 747.ADSCrossRefGoogle Scholar
  11. 11.
    Kudinov, I.V., Kudinov, V.A., and Kotova, E.V., High Temp., 2017, vol. 55, no. 4, p. 541.CrossRefGoogle Scholar
  12. 12.
    Leithner, R., Nugymanova, A., Beketayeva, M., et al., in Proc. MATEC Web of Conf. CSCC, 2016, p. 5.Google Scholar
  13. 13.
    Askarowa, A.S., Karpenko, E.I., Messerle, V.E., and Ustimenko, A., J. High Energy Chem., 2006, vol. 40, p. 111.CrossRefGoogle Scholar
  14. 14.
    Askarowa, A. and Buchmann, M., in Proc. 18th Dutch–German Conf. on Flames: Gesell Energietech “Combustion and Incineration,” Berlin: VDI Berichte, 1997, p. 241.Google Scholar
  15. 15.
    Beketayeva, M.T., Maximov, Yu.V., Ospanova, Sh.S., and Gabitova, Z.K., Int. J. Mech., 2014, vol. 8, p. 112.Google Scholar
  16. 16.
    Glarborg, P., Jensen, A.D., and Johnsson, J.E., Prog. Energy Combust. Sci., 2003, vol. 29, p. 89.CrossRefGoogle Scholar
  17. 17.
    Warnatz, J., Maas, U., and Dibble, R.W., Combustion: Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation, Berlin: Springer, 2001.CrossRefzbMATHGoogle Scholar
  18. 18.
    Beketayeva, M., Ospanova, Sh., Gabitova, Z.K., et al., WSEAS Trans. Heat Mass Transfer, 2014, vol. 9, p. 39.Google Scholar
  19. 19.
    Karpenko, E.I., Karpenko, Yu.E., Messerle, V.E., et al., in Proc. 7th Int. Fall Seminar on Propellants “Explosives and Pyrotechnics,” Xi’an, 2007, p. 672.Google Scholar
  20. 20.
    Askarova, A., Bolegenova, S., Bolegenova, S., et al., Int. J. Mech., 2016, vol. 10, p. 320.Google Scholar
  21. 21.
    Askarova, A.S., Bolegenova, S.A., Bekmuhamet, A., and Maximov, V.Yu., Procedia Eng., 2012, vol. 42, p. 1259.Google Scholar
  22. 22.
    Gidaspov, V.Yu. and Severina, N.S., High Temp., 2017, vol. 55, no. 5, p. 777.CrossRefGoogle Scholar
  23. 23.
    Patankar, S., Numerical Heat Transfer and Fluid Flow, New York: Hemisphere, 1980.CrossRefzbMATHGoogle Scholar
  24. 24.
    Askarova, A.S., Lavrichsheva, Ye., Leithner, R., Müller, H., and Magda, A., Combustion of Low-Rank Coals in Furnaces of Kazakhstan Coal-firing Power Plants, Berlin: VDI Berichte, 2007.Google Scholar
  25. 25.
    Heierle, Ye., Leithner, R., Muller, H., and Askarova, A., WSEAS Trans. Heat Mass Transfer, 2009, vol. 4, no. 4, p. 98.Google Scholar
  26. 26.
    Lockwood, F. and Shah, N., in ASME–AIChE Heat Transfer Conf., Salt Lake City, 1976, p. 2.Google Scholar
  27. 27.
    Leithner, R., Numerical Simulation. Computational Fluid Dynamics CFD: Course of Lecture, Braunschweig, 2006.Google Scholar
  28. 28.
    Askarova, A.S., Messerle, V.E., Ustimenko, A.B., Bolegenova, S.A., Maksimov, V.Yu., and Gabitova, Z.Kh., High Temp., 2015, vol. 53, no. 3, p. 445.CrossRefGoogle Scholar
  29. 29.
    Askarova, A., Bolegenova, S., Bekmukhamet, A., Ospanova, Sh., and Gabitova, Z., J. Eng. Appl. Sci., 2014, vol. 9, no. 1, p. 24.Google Scholar
  30. 30.
    Askarova, A.S., Bolegenova, S.A., Maksimov, V.Y., Bekmuhamet, A., and Ospanova, S.S., Procedia Eng., 2012, vol. 42, p. 1250.CrossRefGoogle Scholar
  31. 31.
    Ovchinnikov, V.A. and Yakimov, A.S., High Temp., 2017, vol. 55, no. 5, p. 782.CrossRefGoogle Scholar
  32. 32.
    Aliyarov, B.K. and Aliyarova, M.B., Szhiganie kazakhstanskikh uglei na TES i na krupnykh kotel’nykh: opyt i perspektivy (Combustion of Kazakhstani Coal at TPPs and Large Boiler Plants: Experience and Prospects), Almaty, 2014.Google Scholar
  33. 33.
    Teplovoi raschet kotlov: normativnyi metod (Thermal Calculation of Boilers: Standard Method), St. Petersburg: Nauchn.-Proivodst. Ob”ed. Issled. Proektir. Tepl. Oborud., 1998.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • A. S. Askarova
    • 1
  • S. A. Bolegenova
    • 2
  • S. A. Bolegenova
    • 2
  • V. Yu. Maximov
    • 1
  • M. T. Beketayeva
    • 1
  1. 1.Scientific Research Institute of Experimental and Theoretical Physics, Kazakh National UniversityAlmatyKazakhstan
  2. 2.Physics and Technology Department, Kazakh National UniversityAlmatyKazakhstan

Personalised recommendations