Advertisement

High Temperature

, Volume 56, Issue 5, pp 621–631 | Cite as

Inelastic Processes in a Gas-Discharge Plasma of Inert Gases

  • V. P. Afanas’ev
  • B. M. Smirnov
  • D. A. ZhilyaevEmail author
PLASMA INVESTIGATIONS
  • 21 Downloads

Abstract

The excitation rate constants of the lower excited states of inert gas atoms by electron impact in the gas-discharge plasma are determined with taking into account the self-consistent character of this process and the rates of similar processes in the plasma of alkali metals. The rate constants of the stepwise ionization in a uniform gas-discharge plasma of inert gases are determined. They are also determined in a nonunifom plasma if the nonuniformity is a result of the passage of a gas-discharge current. Based on the rates of these processes, the populations of lower excited levels are calculated in the case where the equilibrium in the gas-discharge plasma of inert gases is determined by inelastic collisions of electrons with atoms.

Notes

ACKNOWLEDGMENTS

The work was supported by State projects no. AAAA-A-16-116051810083-4.

REFERENCES

  1. 1.
    Raizer, Yu.P., Fizika gazovogo razryada (Physics of Gas- Discharge), Moscow: Intellekt, 2009.Google Scholar
  2. 2.
    Biberman, L.M., Vorob’ev, V.S., and Yakubov, I.T., Phys.—Usp., 1979, vol. 22, no. 6, p. 411.ADSCrossRefGoogle Scholar
  3. 3.
    Biberman, L.M., Vorob’ev, V.S., and Yakubov, I.T., Kinetika neravnovesnoi nizkotemperaturnoi plazmy (Kinetics of Nonequilibrium Low-Temperature Plasma), Moscow: Nauka, 1982.Google Scholar
  4. 4.
    Loureiro, J. and Ricard, A., J. Appl. Phys., 1985, vol. 57, no. 1, p. 82.ADSCrossRefGoogle Scholar
  5. 5.
    Bogaerts, A., Gijbels, R., and Vlcek, J., J. Appl. Phys., 1998, vol. 84, no. 1, p. 121.ADSCrossRefGoogle Scholar
  6. 6.
    Bogaerts, A., Gijbels, R., and Vlcek, J., J. Appl. Phys., 1999, vol. 86, no. 8, p. 4124.ADSCrossRefGoogle Scholar
  7. 7.
    Bogaerts, A. and Gijbels, R., Spectrochim. Acta, Part B, 2000, vol. 55, no. 3, p. 263.ADSCrossRefGoogle Scholar
  8. 8.
    Vlcek, J.A., J. Phys., 1989, vol. 22, no. 5, p. 623.ADSGoogle Scholar
  9. 9.
    Capitelli, M., Dilonardo, M., and Gorse, C., Chem. Phys., 1981, vol. 56, no. 1, p. 29.CrossRefGoogle Scholar
  10. 10.
    Bretagne, J., Capitelli, M., Gorse, C., and Puec, V., EPL, 1987, vol. 3, no. 11, p. 1179.ADSCrossRefGoogle Scholar
  11. 11.
    Shutov, B.M., Smirnov, S.A., Konovalov, A.S., and Ivanov, A.N., High Temp., 2016, vol. 54, no. 4, p. 483.CrossRefGoogle Scholar
  12. 12.
    Afanas’ev, V.P., Smirnov, B.M., and Zhilyaev, D.A., J. Exp. Theor. Phys., 2014, vol. 119, no. 1, p. 138.ADSCrossRefGoogle Scholar
  13. 13.
    Smirnov, B.M., Theory of Gas-Discharge Plasma, Berlin: Springer, 2015.CrossRefzbMATHGoogle Scholar
  14. 14.
    Dyatko, N.A., Ionikh, Y.Z., Kohetov, I.V., et al., J. Phys., 2008, vol. 41, no. 5, 055204.ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    Smirnov, B.M., Svoistva gazorazryadnoi plazmy (Properties of Gas-Discharge Plasma), St. Petersburg: St. Petersburg. Politekh. Univ., 2010, vol. 361.Google Scholar
  16. 16.
    Pack, J.L., Voshall, R.E., Phelps, A.V., and Kline, L.E., J. Appl. Phys., 1992, vol. 71, no. 11, p. 5363.ADSCrossRefGoogle Scholar
  17. 17.
    Smirnov, B.M., Plasma Processes and Plasma Kinetics, Weinheim: Wiley, 2007.CrossRefGoogle Scholar
  18. 18.
    Smirnov, B.M., Phys.—Usp., 2002, vol. 45, no. 12, p. 1251.ADSCrossRefGoogle Scholar
  19. 19.
    Smirnov, B.M., Physics of Ionized Gases, New York: Wiley, 2001.CrossRefGoogle Scholar
  20. 20.
    Smirnov, B.M., J. Exp. Theor. Phys., 2013, vol. 116, no. 1, p. 48.ADSCrossRefGoogle Scholar
  21. 21.
    Smirnov, B.M., Fizika slaboionizovannogo gaza (Physics of Weakly Ionized Gas), Moscow: Fizmatgiz, 1972.Google Scholar
  22. 22.
    Landau, L.D., Zh. Eksp. Teor. Fiz., 1937, vol. 7, p. 203.Google Scholar
  23. 23.
    Gurevich, L.E., Osnovy fizicheskoi kinetiki (Fundamentals of Physical Kinetics), Leningrad: Gos. Izg. Teor. Tekh. Lit., 1940.Google Scholar
  24. 24.
    Kudryavtsev, A.A., Smirnov, A.A., and Tsendin, L.D., Fizika tleyushchego razryada (Physics of a Glow Discharge), St. Petersburg: Lan’, 2010.Google Scholar
  25. 25.
    Vdovin, Yu.A. and Galitskii, V.M., Zh. Eksp. Teor. Fiz., 1967, vol. 52, no. 5, p. 1345.Google Scholar
  26. 26.
    Krainov, V.P., Reiss, H.R., and Smirnov, B.M., Radiative Processes in Atomic Physics, New York: Wiley, 1987.Google Scholar
  27. 27.
    Veklenko, B.A., Zh. Eksp. Teor. Fiz., 1959, vol. 36, no. 1, p. 204.MathSciNetGoogle Scholar
  28. 28.
    Thomson, J.J., Philos. Mag., 1912, vol. 23, p. 449.CrossRefGoogle Scholar
  29. 29.
    Mustafaev, A.S., Nekuchaev, V.O., and Sukhomlinov, V.S., High Temp., 2018, vol. 56, no. 2, p. 162.CrossRefGoogle Scholar
  30. 30.
    Smirnov, B.M., Iony i vozbuzhdennye atomy v plazme (Ions and Excited Atoms in Plasma), Moscow: Atomizdat, 1974.Google Scholar
  31. 31.
    Smirnov, B.M., Phys.—Usp., 2009, vol. 52, no. 6, p. 559.ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • V. P. Afanas’ev
    • 1
  • B. M. Smirnov
    • 2
  • D. A. Zhilyaev
    • 2
    Email author
  1. 1.National Research University “Moscow Power Engineering Institute”MoscowRussia
  2. 2.Joint Institute for High Temperatures, Russian Academy of SciencesMoscowRussia

Personalised recommendations