Advertisement

High Temperature

, Volume 56, Issue 5, pp 719–726 | Cite as

Numerical Modeling of the Influence of Thermal Protection Materials on Characteristics of Conjugate Heat and Mass Transfer with Spatial Flow around Blunted Bodies

  • V. I. Zinchenko
  • V. D. Gol’din
  • V. G. ZverevEmail author
HEAT AND MASS TRANSFER AND PHYSICAL GASDYNAMICS
  • 8 Downloads

Abstract

The three-dimensional problem of conjugate heat and mass transfer upon the motion of a spherically blunted cone at various angles of attack along a set trajectory is theoretically explored. Thermal protection materials, including carbon materials with high heat-conducting properties, conventional carbon fiber-reinforced plastic coatings, and promising nondestructible ceramic materials, are analyzed. It is shown that the application of the latter makes it possible to preserve the initial geometry of the body and to attain a considerable temperature decrease in the coating surface upon the development of new materials with high thermal conductivity.

Notes

ACKNOWLEDGMENTS

This study was supported by the Tomsk State University competitiveness improvement program.

REFERENCES

  1. 1.
    Utyuzhnikov S.V., Tirskiy G.A. Hypersonic aerodynamics and heat transfer. New York, Connecticut: Begell House. 2014. 536 p.Google Scholar
  2. 2.
    Anderson, J.D., Hypersonic and High-Temperature Gas Dynamics, Reston, VA: Am. Inst. Aeronaut. Astronaut., 2006.CrossRefGoogle Scholar
  3. 3.
    Polezhaev, Yu.V. and Yurevich, F.P., Teplovaya zashchita (Thermal Protection), Moscow: Energiya, 1976.Google Scholar
  4. 4.
    Pankratov, B.M., Polezhaev, Yu.V., and Rud’ko, A.K., Vzaimodeistvie materialov s gazovymi potokami (Interaction of Materials with Gas Flows), Moscow: Mashinostroenie, 1975.Google Scholar
  5. 5.
    Gorskii, V.V. and Zaprivoda, A.V., High Temp., 2014, vol. 52, no. 2, p. 230.CrossRefGoogle Scholar
  6. 6.
    Formalev, V.F., Kolesnik, S.A., Kuznetsova, E.L., and Rabinskii, L.N., High Temp., 2016, vol. 54, no. 3, p. 390.CrossRefGoogle Scholar
  7. 7.
    Geshele, V.D., Polezhaev, Yu.V., Raskatov, I.P., Stonik, O.G., and Gabbasova, G.V., High Temp., 2013, vol. 51, no. 5, p. 722.CrossRefGoogle Scholar
  8. 8.
    Grishin, A.M., Golovanov, A.N., Zinchenko, V.I., Efimov, K.N., and Yakimov, A.S., Matematicheskoe i fizicheskoe modelirovanie teplovoi zashchity (Mathematical and Physical Modeling of Thermal Protection), Tomsk: Tomsk. Gos. Univ., 2011.Google Scholar
  9. 9.
    Grishin, A.M. and Fomin, V.M., Sopryazhennye i nestatsionarnye zadachi mekhaniki reagiruyushchikh sred (Conjugate and Nonstationary Problems of the Mechanics of Reacting Media), Novosibirsk: Nauka, 1984.zbMATHGoogle Scholar
  10. 10.
    Zinchenko, V.I., Matematicheskoe modelirovanie sopryazhennykh zadach teplomassoobmena (Mathematical Modeling of Conjugate Heat and Mass Transfer Problems), Tomsk: Tomsk. Gos. Univ., 1985.zbMATHGoogle Scholar
  11. 11.
    Zemlyanskii, B.A. and Stepanov, G.N., Fluid Dyn., 1981, vol. 16, no. 5, p. 787.ADSCrossRefGoogle Scholar
  12. 12.
    Zinchenko, V.I., Efimov, K.N., and Yakimov, A.S., High Temp., 2011, vol. 49, no. 1, p. 81.CrossRefGoogle Scholar
  13. 13.
    Antonov, V.A., Gol’din, V.D., and Pakhomov, F.M., Aerodinamika tel so vduvom (Aerodynamics of Bodies with Blowing), Tomsk: Tomsk. Gos. Univ., 1990.Google Scholar
  14. 14.
    Cebeci, T. and Bradshaw, P., Physical and Computational Aspects of Convective Heat Transfer, New York: Springer, 1984.CrossRefzbMATHGoogle Scholar
  15. 15.
    Chen, K.K. and Thyson, N.A., AIAA J., 1971, vol. 9, no. 5, p. 821.ADSCrossRefGoogle Scholar
  16. 16.
    Grishin, A.M., Bertsun, V.N., and Zinchenko, V.I., Iteratsionno-interpolyatsionnyi metod i ego prilozheniya (Iteration–Interpolation Method and Its Applications), Tomsk: Tomsk. Gos. Univ., 1981.zbMATHGoogle Scholar
  17. 17.
    Petukhov, I.V., Numerical calculation of two-dimensional flow in the boundary layer, in Chislennye metody resheniya differentsial’nykh i integral’nykh uravnenii i kvadraturnye formuly (Numerical Methods for Solving Differential and Integral Equations and Quadrature Formulas), Moscow: Nauka, 1964, p. 304.Google Scholar
  18. 18.
    Gadzhiev, A.D., Pisarev, V.N., and Shestakov, A.A., USSR Computational Mathematics and Mathematical Physics, 1982, vol. 22, no. 2, p. 339.Google Scholar
  19. 19.
    Nesmelov, V.V., Combust., Explos. Shock Waves (Engl. Transl.), 1993, vol. 29, no. 6, p. 714.Google Scholar
  20. 20.
    Kablov, E.N., Grashchenkov, D.V., Isaeva, N.V., and Solntsev, S.S., Ross. Khim. Zh., 2010, vol. 54, no. 1, p. 20.Google Scholar
  21. 21.
    Hunter, L.W., Perini, L.L., Conn, D.W., and Brenza, P.T., J. Spacecr. Rockets, 1986, vol. 23, no. 5, p. 487.ADSCrossRefGoogle Scholar
  22. 22.
    Anfimov, N.A. and Al’tov, V.V., Teplofiz. Vys. Temp., 1965, no. 3, p. 409.Google Scholar
  23. 23.
    Mugalev, V.P., Some issues of the effect of injection on a turbulent boundary layer, in Turbulentnye techeniya (Turbulent Flows), Moscow: Nauka, 1970, p. 87.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • V. I. Zinchenko
    • 1
  • V. D. Gol’din
    • 1
  • V. G. Zverev
    • 1
    Email author
  1. 1.National Research Tomsk State UniversityTomskRussia

Personalised recommendations