Advertisement

High Temperature

, Volume 56, Issue 4, pp 587–604 | Cite as

Femtosecond Laser Technology for Solid-State Material Processing: Creation of Functional Surfaces and Selective Modification of Nanoscale Layers

  • S. A. RomashevskiyEmail author
  • S. I. Ashitkov
  • M. B. Agranat
Review
  • 40 Downloads

Abstract

Information on the rapidly increasing use of modification of solid-state materials surfaces by femtosecond laser pulses at moderate intensities (around 0.1–10 TW/cm2) is presented as applied to creation of functional surfaces with tailored thermophysical, hydrodynamic, and mechanical properties and in application to selective modification and removal of nanoscale (1–100 nm) layers of bulk and thin-film multilayer materials. The problems in obtaining functional surfaces with the externally controllable wetting behavior of superhydrophobic surfaces showing a self-cleaning effect and superhydrophilic surfaces with a controlled Leidenfrost temperature, critical heat flux, and heat transfer coefficient are considered for heat-transfer enhancement during the evaporation and boiling of the working fluid. Data on the hardening of the surface layer of structural materials and the synthesis of diamond-like films are given. The methods for the precision selective removal of nanoscale films and surface modification with the formation of subnanoscale structures are considered.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abbey, B., Dilanian, R.A., Darmanin, C., Ryan, R.A., Putkunz, C.T., Martin, A.V., Quiney, H.M., et al., Sci. Adv., 2016, vol. 2, no. 9, E1601186.Google Scholar
  2. 2.
    Potter, E.D., Herek, J.L., Pedersen, S., Liu, Q., and Zewail, A.H., Nature, 1992, vol. 355, p. 66.ADSCrossRefGoogle Scholar
  3. 3.
    Meesat, R., Belmouaddine, H., Allard, J.-F., Tanguay-Renaud, C., Lemay, R., Brastaviceanu, T., Houde, D., et al., Proc. Natl. Acad. Sci. U. S. A., 2012, vol. 109, no. 38, p. E2508.Google Scholar
  4. 4.
    Zhu, Y. and He, H., Biomed. Opt. Express, 2017, vol. 8, no. 11, p. 4965.CrossRefGoogle Scholar
  5. 5.
    Rodriguez, R. and Redman, R., J. Exp. Bot., 2008, vol. 59, no. 5, p. 1109.CrossRefGoogle Scholar
  6. 6.
    Dmitriev, A.S., Vvedenie v nanoteplofiziku (Introduction to Nanothermophysics), Moscow: BINOM, 2015.Google Scholar
  7. 7.
    Dmitriev, A.S. and Mikhailova, I.A., Vvedenie v nanoenergetiku (Introduction to Nanoenergetics), Moscow: Mosk. Energ. Inst., 2011.Google Scholar
  8. 8.
    Vorobyev, A. and Guo, C., Laser Photon. Rev., 2013, vol. 7, p. 385.ADSCrossRefGoogle Scholar
  9. 9.
    Ashitkov, S.I., Romashevskii, S.A., Komarov, P.S., Burmistrov, A.A., Zhakhovskii, V.V., Inogamov, N.A., and Agranat, M.B., Quantum Electron., 2015, vol. 45, no. 6, p. 547.ADSCrossRefGoogle Scholar
  10. 10.
    Vorobyev, A. and Guo, C., Opt. Express, 2006, vol. 14, no. 6, p. 2164.ADSCrossRefGoogle Scholar
  11. 11.
    Tull, B., Carey, J., Mazur, E., McDonald, J., and Yalisove, S., MRS Bull., 2006, vol. 31, p. 626.CrossRefGoogle Scholar
  12. 12.
    Romashevskiy, S.A., Ashitkov, S.I., Ovchinnikov, A.V., Kondratenko, P.S., and Agranat, M.B., Appl. Surf. Sci., 2016, vol. 374, p. 12.ADSCrossRefGoogle Scholar
  13. 13.
    Shi, X., Li, X., Jiang, L., Qu, L., Zhao, Y., Ran, P., Wang, Q., Cao, Q., Ma, T., and Lu, Y., Sci. Rep., 2015, vol. 5, p. 17557.ADSCrossRefGoogle Scholar
  14. 14.
    Wang, Z.K., Zheng, H.Y., and Xia, H.M., Microfluid. Nanofluid., 2011, vol. 10.Google Scholar
  15. 15.
    Chang, T.-L., Chen, C.-Y., and Wang, C.-P., Microelectron. Eng., 2013, vol. 110, p. 381.CrossRefGoogle Scholar
  16. 16.
    Streubel, R., Bendt, G., and Gökce, B., Nanotecnology, 2016, vol. 27, 205602.Google Scholar
  17. 17.
    Zhang, X., Liu, H., Huang, X., and Jiang, H., J. Mater. Chem. C, 2015, vol. 3, p. 3336.CrossRefGoogle Scholar
  18. 18.
    Bonse, J., Brzezinka, K.-W., and Meixner, A.J., Appl. Surf. Sci., 2004, vol. 221, p. 215.ADSCrossRefGoogle Scholar
  19. 19.
    Linde, D. and Sokolowski-Tinten, K., Appl. Surf. Sci., 2000, vols. 154–155, p. 1.Google Scholar
  20. 20.
    Younkin, R., Carey, J.E., Mazur, E., Levinson, J.A., and Friend, C.M., J. Appl. Phys., 2003, vol. 93, p. 2626.ADSCrossRefGoogle Scholar
  21. 21.
    Kruse, C., Anderson, T., Wilson, C., Zuhlke, C., Alexander, D., Gogos, G., and Ndao, S., Langmuir, 2013, vol. 29, p. 9798.CrossRefGoogle Scholar
  22. 22.
    Kruse, C., Anderson, T., Wilson, C., Zuhlke, C., Alexander, D., Gogos, G., and Ndao, S., Int. J. Heat Mass Transfer, 2015, vol. 82, p. 109.CrossRefGoogle Scholar
  23. 23.
    Kruse, C., Somanas, I., Anderson, T., Wilson, C., Zuhlke, C., Alexander, D., Gogos, G., and Ndao, S., Microfluid. Nanofluid., 2015, vol. 18, no. 5, p. 1417.CrossRefGoogle Scholar
  24. 24.
    Vorobyev, A. and Guo, C., Appl. Phys. Lett., 2009, vol. 94, 224102.Google Scholar
  25. 25.
    Vorobyev, A.Y. and Guo, C., J. Appl. Phys., 2015, vol. 117, 033103.Google Scholar
  26. 26.
    Vorobyev, A. and Guo, C., Opt. Express, 2010, vol. 18, p. 6455.ADSCrossRefGoogle Scholar
  27. 27.
    Baldacchini, T., Carey, J.E., Zhou, M., and Mazur, E., Langmuir, 2006, vol. 22, no. 11, p. 4917.CrossRefGoogle Scholar
  28. 28.
    Wu, B., Zhou, M., Li, J., Ye, X., Li, G., and Cai, L., Appl. Surf. Sci., 2009, vol. 256, p. 61.ADSCrossRefGoogle Scholar
  29. 29.
    Zorba, V., Persano, L., Pisignano, D., Athanassiou, A., Stratakis, E., Cingolani, R., Tzanetakis, P., and Fotakis, C., Nanotecnology, 2006, vol. 17, p. 3234.ADSCrossRefGoogle Scholar
  30. 30.
    Barberoglou, M., Zorba, V., Stratakis, E., Spanakis, E., Tzanetakis, P., Anastasiadis, S.H., and Fotakis, C., Appl. Surf. Sci., 2009, vol. 255, p. 5425.ADSCrossRefGoogle Scholar
  31. 31.
    Frysali, M.A., Papoutsakis, L., Kenanakis, G., and Anastasiadis, S.H., J. Phys. Chem. C, 2015, vol. 119, p. 25401.CrossRefGoogle Scholar
  32. 32.
    Bizi-Bandoki, P., Benayoun, S., Valette, S., Beaugiraud, B., and Audouard, E., Appl. Surf. Sci., 2011, vol. 257, p. 5213.ADSCrossRefGoogle Scholar
  33. 33.
    Paradisanos, I., Fotakis, C., Anastasiadis, S.H., and Stratakis, E., Appl. Phys. Lett., 2015, vol. 107, 111603.Google Scholar
  34. 34.
    Romashevskiy, S.A., Agranat, M.B., and Dmitriev, A.S., High Temp., 2016, vol. 54, no. 3, p. 461.CrossRefGoogle Scholar
  35. 35.
    Romashevskiy, S.A. and Ovchinnikov, A.V., High Temp., 2018, vol. 56, no. 1, p. 4.Google Scholar
  36. 36.
    Agranat, M.B., Ashitkov, S.I., Ovchinnikov, A.V., and Romashevskii, S.A., RF Patent 2015106949, 2015.Google Scholar
  37. 37.
    Peyre, P., Berthe, L., Scherpereel, X.P., and Fabbro, R., Mater. Sci., 1998, vol. 33, p. 1421.ADSCrossRefGoogle Scholar
  38. 38.
    Sano, Y., Obata, M., Kubo, T., Mukai, N., Yoda, M., Masaki, K., and Ochi, Y., Sci. Eng. A, 2006, vol. 417, p. 334.CrossRefGoogle Scholar
  39. 39.
    Cheng, G.J., Pirzada, D., and Zhou, M., J. Appl. Phys., 2007, vol. 101, 063108.Google Scholar
  40. 40.
    Gao, H. and Cheng, G.J., J. Microelectromech. Syst., 2010, vol. 19, no. 2, p. 273.MathSciNetCrossRefGoogle Scholar
  41. 41.
    Zhou, J.Z., Yang, J.C., Zhang, Y.K., and Zhou, M., J. Mater. Process. Technol., 2002, vol. 129, p. 241.CrossRefGoogle Scholar
  42. 42.
    Zhou, M., Zhang, Y.K., and Cai, L., Appl. Phys. A, 2003, vol. 77, p. 549.ADSCrossRefGoogle Scholar
  43. 43.
    Zheng, C., Sun, S., Ji, Z., and Wang, W., Appl. Surf. Sci., 2010, vol. 257, p. 1589.ADSCrossRefGoogle Scholar
  44. 44.
    Ocaña, J.L., Morales, M., Molpeceres, C., and Porro, J.A., Proc. SPIE, 2006, vol. 6346, p. 63461.CrossRefGoogle Scholar
  45. 45.
    Nie, X., He, W., Li, Q.-P., Long, N., and Chai, Y., J. Laser Appl., 2013, vol. 25, 042001.Google Scholar
  46. 46.
    Peyre, P., Scherpereel, X., Berthe, L., Carboni, C., Fabbro, R., Beranger, G., and Lemaitre, C., Mater. Sci. Eng., A, 2000, vol. 280.Google Scholar
  47. 47.
    Yilbas, B.S., Shuja, S.Z., Arif, A., and Gondal, M.A., J. Mater. Process. Technol., 2003, vol. 135, p. 6.CrossRefGoogle Scholar
  48. 48.
    Yakimets, I., Richard, C., Beranger, G., and Peyre, P., Wear, 2004, vol. 256, p. 311.CrossRefGoogle Scholar
  49. 49.
    Aldajah, S.H., Ajayi, O.O., Fenske, G.R., and Xu, Z., J. Tribol., 2005, vol. 127, p. 596.CrossRefGoogle Scholar
  50. 50.
    Farrahi, G.H. and Ghadbeigi, H., J. Mater. Process. Technol., 2006, vol. 174, p. 318.CrossRefGoogle Scholar
  51. 51.
    Fairand, B.P., Wilcox, B.A., Gallagher, W.J., and Williams, D.N., J. Appl. Phys., 1972, vol. 43, no. 9, p. 3893.ADSCrossRefGoogle Scholar
  52. 52.
    Peyre, P., Fabbro, R., Merrien, P., and Lieurade, H.P., Mater. Sci. Eng., A, 1996, vol. 210, p. 102.CrossRefGoogle Scholar
  53. 53.
    Hong, Z. and Chengye, Y., Mater. Sci. Eng., A, 1998, vol. 257, p. 322.CrossRefGoogle Scholar
  54. 54.
    Rubio-González, C., Ocaña, J.L., Gomez-Rosas, G., Molpeceres, C., Paredes, M., Banderas, A., Porro, J., and Morales, M., Mater. Sci. Eng., A, 2004, vol. 386, p. 291.CrossRefGoogle Scholar
  55. 55.
    Tan, Y., Wu, G., Yang, J.M., and Pan, T., Fatigue Fract. Eng. Mater. Struct., 2004, vol. 27, p. 649.CrossRefGoogle Scholar
  56. 56.
    Forget, P., Strudel, J.L., Jeandin, M., Lu, J., and Castex, L., Mater. Manuf. Processes, 1990, vol. 5, p. 501.CrossRefGoogle Scholar
  57. 57.
    Hammersley, G., Hackel, L.A., and Harris, F., Opt. Lasers Eng., 2000, vol. 34, p. 327.CrossRefGoogle Scholar
  58. 58.
    Kaspar, J., Luft, A., and Skrotzki, W., Cryst. Res. Technol., 2000, vol. 35, p. 437.CrossRefGoogle Scholar
  59. 59.
    Wenwu, Z., Lawrence Yao, Y., and Noyan, I.C., J. Manuf. Sci. Eng., 2004, vol. 126, p. 18.CrossRefGoogle Scholar
  60. 60.
    See, D.W., Dulaney, J.L., Clauer, A.H., and Tenaglia, R.D., Surf. Eng., 2002, vol. 18, p. 32.CrossRefGoogle Scholar
  61. 61.
    Tsujino, M., Sano, T., Ogura, T., Okoshi, M., Inoue, N., Ozaki, N., Kodama, R., Kobayashi, K.F., and Hirose, A., Appl. Phys. Express, 2012, vol. 5, 022703.Google Scholar
  62. 62.
    Matsuda, T., Sano, T., Arakawa, K., and Hirose, A., Appl. Phys. Lett., 2014, vol. 105, 021902.Google Scholar
  63. 63.
    Valiev, R., Nat. Mater., 2004, vol. 3, p. 511.ADSCrossRefGoogle Scholar
  64. 64.
    Matsuda, T., Sano, T., Arakawa, K., and Hirose, A., J. Appl. Phys., 2014, vol. 116, 183506.Google Scholar
  65. 65.
    Meyers, M.A., Jarmakani, H., Bringa, E.M., and Remington, B.A., in Dislocations in Solids, Hirth, J.P. and Kubin, L., Eds., Amsterdam: North-Holland, 2009, vol. 15, p. 91.Google Scholar
  66. 66.
    Demaske, B.J., Zhakhovsky, V.V., Inogamov, N.A., and Oleynik, I.I., Phys. Rev. B: Condens. Matter Mater. Phys., 2013, vol. 87, 054109.Google Scholar
  67. 67.
    Ham, R.K., Philos. Mag., 1961, vol. 6, p. 1183.ADSCrossRefGoogle Scholar
  68. 68.
    Nian, Q., Wang, Y., Yang, Y., Li, J., Zhang, M.Y., Shao, J., Tang, L., and Cheng, G.J., Sci. Rep., 2014, vol. 4, p. 6612.ADSCrossRefGoogle Scholar
  69. 69.
    Hartl, A., Schmich, E., Garrido, J.A., Hernando, J., Catharino, S.C.R., Walter, S., Feulner, P., Kromka, A., Steinmüller, D., and Stutzmann, M., Nat. Mater., 2004, vol. 3, p. 736.ADSCrossRefGoogle Scholar
  70. 70.
    Prawer, S. and Greentree, A.D., Science, 2008, vol. 320, p. 1601.CrossRefGoogle Scholar
  71. 71.
    Nakagawa, K., Nishitani-Gamo, M., and Ando, T., Int. J. Hydrogen Energy, 2005, vol. 30, p. 201.CrossRefGoogle Scholar
  72. 72.
    Wolters, J., Schell, A.W., Kewes, G., Nüsse, N., Schoengen, M., Döscher, H., Hannappe, T., Löchel, B., Barth, M., and Benson, O., Appl. Phys. Lett., 2010, vol. 97, no. 14, 141108.Google Scholar
  73. 73.
    May, P.W., Science, 2008, vol. 319, p. 1490.CrossRefGoogle Scholar
  74. 74.
    Das, D. and Singh, R.N., Int. Mater. Rev., 2007, vol. 52, p. 29.CrossRefGoogle Scholar
  75. 75.
    Corentin, L.G., Fabrice, B., Tetsuo, I., Ohfuji, H., and Rouzaud, J.-N., Carbon, 2007, vol. 45, p. 636.CrossRefGoogle Scholar
  76. 76.
    Irifune T., Kurio A., Sakamoto, S. Inoue, T., and Sumiya, H., Nature, 2003, vol. 421, no. 6923, p. 599.ADSCrossRefGoogle Scholar
  77. 77.
    Greiner, N.R., Phillips, D.S., Johnson, J.D., and Volk, F., Nature, 1988, vol. 333, no. 6172, p. 440.ADSCrossRefGoogle Scholar
  78. 78.
    Angus, J.C., Will, H.A., and Stanko, W.S., J. Appl. Phys., 1968, vol. 39, p. 2915.ADSCrossRefGoogle Scholar
  79. 79.
    Narayan, J., Godbole, V.P., and White, C.W., Science, 1991, vol. 252, p. 416.ADSCrossRefGoogle Scholar
  80. 80.
    Merkulov, V.I., Lowndes, D.H., Jellison Puretzky, A.A., and Geohegan, D.B., Appl. Phys. Lett., 1998, vol. 73, p. 2591.ADSCrossRefGoogle Scholar
  81. 81.
    Mistry, P., Turchan, M.C., Shengzhong, L., Granse, G.O., Baurmann, T., and Shara, M.G., Mater. Res. Innovations, 1997, vol. 1, p. 149.CrossRefGoogle Scholar
  82. 82.
    Varnin, V.P., Laptev, V.A., and Ralchenko, V.G., Inorg. Mater., 2006, vol. 42, p. 1.CrossRefGoogle Scholar
  83. 83.
    Sankaran, K.J., Chen, H.C., Sundaravel, B., Lee, C.Y., Tail, N.H., and Lin, I.N., Appl. Phys. Lett., 2013, vol. 102, 061604.Google Scholar
  84. 84.
    Liu, C., Xiao, X., Wang, J., and Shi, B., J. Appl. Phys., 2007, vol. 102, 074115.Google Scholar
  85. 85.
    Gaudin, J., Peyrusse, O., Chalupsky, J., Toufarova, M., Vysin, L., Hajkova, V., Sobierajski, R., and Burian, T., Phys. Rev. B: Condens. Matter Mater. Phys., 2012, vol. 86, 024103.Google Scholar
  86. 86.
    Hirsch, A., The era of carbon allotropes, Nature Materials, 2010, vol. 9, p. 868.ADSGoogle Scholar
  87. 87.
    Robertson, J., Mater. Sci. Eng., R, 2002, vol. 37, p. 129.CrossRefGoogle Scholar
  88. 88.
    Ferrari, A.C., Kleinsorge, B., Morrison, N.A., and Hart, A., J. Appl. Phys., 1999, vol. 85, p. 7191.ADSCrossRefGoogle Scholar
  89. 89.
    Canzado, L.G., Takai, K., Enoki, T., Endo, M., Kim, Y.A., Mizusaki, H., Jorio, A., Coelho, L.N., Magalhães-Paniago, R., and Pimenta, M.A., Appl. Phys. Lett., 2006, vol. 88, 163106.Google Scholar
  90. 90.
    Takai, T., Oga, M., Sato, H., Enoki, T., Ohki, Y., Taomoto, A., Suenaga, K., and Iijima, S., Phys. Rev. B: Condens. Matter Mater. Phys., 2003, vol. 67, 214202.Google Scholar
  91. 91.
    Mcculloch, D.C., Gerstner, E.G., Mckenzie, D.R., Prawer, S., and Kalish, R., Phys. Rev. B: Condens. Matter Mater. Phys., 1995, vol. 52, p. 850.ADSCrossRefGoogle Scholar
  92. 92.
    Linang, Y., Mera, Y., and Maeda, K., Diamond Relat. Mater., 2008, vol. 17, no. 18, p. 137.ADSCrossRefGoogle Scholar
  93. 93.
    Kononenko, T.V., Pimenov, S.M., Kononenko, V.V., Romano, V., Lüthy, W., and Konov, V.I., Appl. Phys. A, 2009, vol. 97, p. 543.ADSCrossRefGoogle Scholar
  94. 94.
    Bonse, J., Rosenfeld, A., and Krüger, J., Appl. Surf. Sci., 2011, vol. 257, p. 5420.ADSCrossRefGoogle Scholar
  95. 95.
    Höhm, S., Herzlieb, M., Rosenfeld, A., Krüger, J., and Bonse, J., Opt. Express, 2015, vol. 23, p. 61.ADSCrossRefGoogle Scholar
  96. 96.
    Emel’yanov, V.I., Danilov, P.A., Zayarnyi, D.A., Ionin, A.A., Kudryashov, S.I., Makarov, S.V., Rudenko, A.A., Shikunov, D.I., and Yurovskikh, V.I., JETP Lett., 2014, vol. 100, no. 3, p. 145.CrossRefGoogle Scholar
  97. 97.
    Borowiec, A., Mackenzie, M., Weatherly, G.C., and Haugen, H.K., Appl. Phys. A, 2003, vol. 76, p. 201.ADSCrossRefGoogle Scholar
  98. 98.
    Crawford, T.H., Yamanaka, J., Botton, G.A., and Haugen, H.K., J. Appl. Phys., 2008, vol. 103, 053104.Google Scholar
  99. 99.
    Borowiec, A., Mackenzie, M., Weatherly, G.C., and Haugen, H.K., Appl. Phys. A, 2004, vol. 77, p. 411.ADSGoogle Scholar
  100. 100.
    Couillard, M., Borowiec, A., Haugen, H.K., Preston, J.S., Griswold, E.M., and Botton, G.A., J. Appl. Phys., 2007, vol. 101, 033519.Google Scholar
  101. 101.
    Bonse, J., Appl. Phys. A, 2006, vol. 84, p. 63.ADSCrossRefGoogle Scholar
  102. 102.
    Eizenkop, J., Avrutsky, I., Auner, G., Georgiev, D.G., and Chaudhary, V., J. Appl. Phys., 2007, vol. 101, 094301.Google Scholar
  103. 103.
    Bonse, J., Baudach, S., Krüger, J., Kautek, W., and Lenzner M., Appl. Phys. A, 2002, vol. 74, p. 19.ADSCrossRefGoogle Scholar
  104. 104.
    Kelly, R. and Miotello, A., Contribution of vaporization and boiling to thermal-spike sputtering by ions or laser pulses, Phys. Rev. E:, 1999, vol. 60, p. 2616.Google Scholar
  105. 105.
    Ashitkov, S.I., Inogamov, N.A., Zhakhovskii, V.V., Emirov, Yu.N., Agranat, M.B., Oleinik, I.I., Anisimov, S.I., and Fortov, V.E., JETP Lett., 2012, vol. 95, no. 4, p. 176.ADSCrossRefGoogle Scholar
  106. 106.
    Romashevskiy, S.A., Ashitkov, S.I., and Dmitriev, A.S., Tech. Phys. Lett., 2016, vol. 42, no. 15, p. 78.Google Scholar
  107. 107.
    Romashevskiy, S.A., Ashitkov, S.I., and Agranat, M.B., Appl. Phys. Lett., 2016, vol. 109, 261601.Google Scholar
  108. 108.
    Agranat, M.B., Anisimov, S.I., Ashitkov, S.I., Zhakhovskii, V.V., Inogamov, N.A., Nishihara, K., Petrov, Yu.V., Fortov, V.E., and Khokhlov, V.A., Appl. Surf. Sci., 2007, vol. 253, p. 6276.ADSCrossRefGoogle Scholar
  109. 109.
    Gudde, J., Hohlfeld, J., Muller, J.G., and Matthias, E., Appl. Surf. Sci., 1998, vols. 127–129, p. 40.Google Scholar
  110. 110.
    Inogamov, N.A., Petrov, Yu.V., Khokhlov, V.A., Anisimov, S.I., Zhakhovskii, V.V., Ashitkov, S.I., Komarov, P.S., Agranat, M.B., Fortov, V.E., Migdal, K.P., Il’nitskii, D.K., and Emirov, Yu.N., J. Opt. Technol., 2014, vol. 81, no. 5, p. 233.CrossRefGoogle Scholar
  111. 111.
    Murphy, R.D., Torralva, B., and Yalisove, S.M., Appl. Phys. Lett., 2013, vol. 102, 181602.Google Scholar
  112. 112.
    Ostendorf, A., et al., Selective ablation of thin films by pulsed laser, in Fundamentals of Laser-Assisted Microand Nanotechnologies, Veiko, V.P. and Konov, V.I., Eds., Springer, 2014, vol. 195, p. 201.Google Scholar
  113. 113.
    Bovatsek, J., Tamhankar, A., Patel, R.S., Bulgakova, N.M., and Bonse, J., Thin Solid Films, 2010, vol. 518, p. 2897.ADSCrossRefGoogle Scholar
  114. 114.
    Compaan, A.D., Matulionis, I., and Nakade, S., Opt. Laser Eng., 2000, vol. 34, p. 15.CrossRefGoogle Scholar
  115. 115.
    Gower, M.C., Opt. Express, 2000, vol. 7, p. 56.ADSCrossRefGoogle Scholar
  116. 116.
    Grohe, A., Knorz, A., Nekarda, J., Jäger, U., Mingirulli, N., and Preu, R., Proc. SPIE, 2009, vol. 7202, 72020.Google Scholar
  117. 117.
    Kray, D., Hopman, S., Spiegel, A., Richerzhagen, B., and Willeke, G.P., Sol. Energy Mater. Sol. Cells, 2007, vol. 91, p. 1638.CrossRefGoogle Scholar
  118. 118.
    Grohe, A., Preu, R., Glunz, S.W., and Willeke, G.P., Proc. SPIE, 2006, vol. 6197, 619717.Google Scholar
  119. 119.
    Van Kerschaver, E. and Beaucarne, G., Prog. Photovoltaics: Res. Appl., 2006, vol. 14, p. 107.CrossRefGoogle Scholar
  120. 120.
    Schneiderlöchner, E., Preu, R., Ludemann, R., and Glunz, S.W., Prog. Photovoltaics: Res. Appl., 2002, vol. 10, p. 29.CrossRefGoogle Scholar
  121. 121.
    Sugianto, A., Bovatsek, J., Wenham, S., Tjahjono, B., Guangqi, X., Yu, Y., Hallam, B., Xue, B., Kuepper, N., Chong, C.M., and Patel, R., in Proc. the 35th IEEE Photovoltaic Specialists Conference, 2010, p. 689.Google Scholar
  122. 122.
    Blecher, J.J., Palmer, T.A., Reutzel, E.W., and Debroy, T., J. Appl. Phys., 2012, vol. 112, 114906.Google Scholar
  123. 123.
    Blecher, J.J., Palmer, T.A., Reutzel, E.W., and Debroy, T., J. Appl. Phys., 2012, vol. 112, 114907.Google Scholar
  124. 124.
    Geier, M., Eberstein, M., Grießmann, H., Partsch, U., Völkel, L., Böhme, R., Mann, G., Bonse, J., and Krüger, J., in Proc. 26th European Photovoltaic Solar Energy Conf., 2011, p. 1243.Google Scholar
  125. 125.
    Rana, V., Zhang, Z., Lazik, C., Mishra, R., Weidman, T., and Eberspacher, C., in Proc. 23rd European Photovoltaic Solar Energy Conference, 2008, p. 1942.Google Scholar
  126. 126.
    Correia, S.A.G.D., Lossen, J., Wald, M., Neckermann, K., and Bähr, M., in Proc. 22nd European Photovoltaic Solar Energy Conference, 2007, p. 1061.Google Scholar
  127. 127.
    Knorz, A., Peters, M., Grohe, A., Harmel, C., and Preu, R., Prog. Photovoltaics: Res. Appl., 2009, vol. 17, p. 127.CrossRefGoogle Scholar
  128. 128.
    Schoonderbeek, A., Schütz, V., Haupt, O., and Stute, U., J. Laser Micro/Nanoeng., 2010, vol. 5, p. 248.CrossRefGoogle Scholar
  129. 129.
    Hermann, S., Dezhdar, T., Harder, N.-P., Brendel, R., Seibt, M., and Stroj, S., J. Appl. Phys., 2010, vol. 108, 114514.Google Scholar
  130. 130.
    Bähr, M., Heinrich, G., Stolberg, K.-P., Wütherich, T., and Böhme, R., in Proc. 25th European Photovoltaic Solar Energy Conference and Exhibition, 2010, p. 2490.Google Scholar
  131. 131.
    Heinrich, G., Bähr, M., Stolberg, K., Wütherich, T., Leonhardt, M., and Lawerenz, A., Energy Procedia, 2011, vol. 8, p. 592.CrossRefGoogle Scholar
  132. 132.
    Stolberg, K., Friedel, S., Kremser, B., Leitner, M., and Atsuta, Y., J. Laser Micro/Nanoeng., 2010, vol. 5, p. 125.CrossRefGoogle Scholar
  133. 133.
    Rublack, T. and Seifert, G., Opt. Mater. Express, 2011, vol. 1, p. 543.ADSCrossRefGoogle Scholar
  134. 134.
    Bonse, J., Mann, G., Krüger, J., Marcinkowski, M., and Eberstein, M., Thin Solid Films, 2013, vol. 542, p. 420.ADSCrossRefGoogle Scholar
  135. 135.
    Moreno, M. and Boubekri, R., Sol. Cells, 2012, vol. 100, p. 16.CrossRefGoogle Scholar
  136. 136.
    Nakada, T. and Shirakata, S., Sol. Cells, 2011, vol. 95, p. 1463.CrossRefGoogle Scholar
  137. 137.
    Lemke, A., Ashkenasi, D., and Eichler, H.J., Phys. Procedia, 2013, vol. 41, p. 769.ADSCrossRefGoogle Scholar
  138. 138.
    Wei, Z., Bobbili, P.R., Senthilarasu, S., Shimell, T., and Upadhyaya, H.M., Surf. Coat. Technol., 2014, vol. 241, p. 159.CrossRefGoogle Scholar
  139. 139.
    Gloeckler, M. and Sites, J.R., J. Phys. Chem. Solids, 2005, vol. 66, p. 1891.ADSCrossRefGoogle Scholar
  140. 140.
    Gorji, N.E., Reggiani, U., and Sandrolini, L., Sol. Energy, 2012, vol. 86, p. 920.ADSCrossRefGoogle Scholar
  141. 141.
    Çelen, S., Opt. Laser Technol., 2012, vol. 44, p. 2043.ADSCrossRefGoogle Scholar
  142. 142.
    Chang, G. and Tu, Y., Opt. Lasers Eng., 2012, vol. 50, p. 767.CrossRefGoogle Scholar
  143. 143.
    Kudrius, T., Šlekys, G., and Juodkazis, S., J. Phys. D: Appl. Phys., 2010, vol. 43, 145501.Google Scholar
  144. 144.
    Chang, T.L., Tsai, T.K., Yang, H.P., and Huang, J.Z., Microelectron. Eng., 2012, vol. 98, p. 684.CrossRefGoogle Scholar
  145. 145.
    Nayak, B.K. and Gupta, M.C., Opt. Lasers Eng., 2010, vol. 48, p. 940.CrossRefGoogle Scholar
  146. 146.
    Chang, C.W., Chen, C.Y., Chang, T.L., Ting, C.J., Wang, C.P., and Chou, C.P., Appl. Phys. A, 2012, vol. 109, p. 441.ADSCrossRefGoogle Scholar
  147. 147.
    Mubarok, F. and Espallargas, N., Tribol. Int., 2015, vol. 85, p. 56.CrossRefGoogle Scholar
  148. 148.
    Chen, C.-Y. and Chang, T.-L., Microelectron. Eng., 2015, vol. 143, p. 41.CrossRefGoogle Scholar
  149. 149.
    Hubler, A.C., Schmidt, G.C., Kempa, H., Reuter, K., Hambsch, M., and Bellmann, M., Org. Electron., 2011, vol. 12, p. 419.CrossRefGoogle Scholar
  150. 150.
    Azarova, N.A., Owen, J.W., Mclellan, C.A., Grimminger, M.A., Chapman, E.K., Anthony, J.E., and Jurshescu, O.D., Org. Electron., 2010, vol. 11, p. 1960.CrossRefGoogle Scholar
  151. 151.
    Gallais, L., Bergeret, E., Wang, B., Guerin, M., and Benevent, M., Appl. Phys. A, 2014, vol. 115, p. 177.ADSCrossRefGoogle Scholar
  152. 152.
    Morgan, T.D., Anderson, D.P., and Kim, P., J. Appl. Electrochem., 1994, vol. 24, p. 18.Google Scholar
  153. 153.
    Satta, A., Shamiryan, D., Baklanov, M.R., Whelan, C.M., Le, Q.T., Beyer, G.P., Vantomme, A., Maex, K., Vantomme, A., and Maex, K., J. Electrochem. Soc., 2003, vol. 150, no. 5, p. 300.CrossRefGoogle Scholar
  154. 154.
    Changho, S., Daehwan, A., and Dongsik, K., Appl. Surf. Sci., 2015, vol. 349, p. 361.CrossRefGoogle Scholar
  155. 155.
    Haight, R., Wagner, A., Longo, P., and Lim, D., Proc. SPIE, 2005, vol. 5714, p. 24.ADSCrossRefGoogle Scholar
  156. 156.
    Zhao, Q.Z., Qiu, J.R., Jiang, X.W., Dai, E.W., Zhou, C.H., and Zhu, C.S., Opt. Express, 2005, vol. 13, p. 2089.ADSCrossRefGoogle Scholar
  157. 157.
    Park, M., Chon, B.H., Kim, H.S., Jeoung, S.C., Kim, D., Lee, J.I., Chu, H.Y., and Kim, H.R., Opt. Lasers Eng., 2006, vol. 44, p. 138.CrossRefGoogle Scholar
  158. 158.
    Dowding, C.F. and Lawrence, J., J. Eng. Manuf., 2010, vol. 224, p. 753.CrossRefGoogle Scholar
  159. 159.
    Zoppel, S., Huber, H., and Reider, G.A., Appl. Phys. A, 2007, vol. 89, p. 161.ADSCrossRefGoogle Scholar
  160. 160.
    Dong, Y., Sakata, H., and Molian, P., Appl. Surf. Sci., 2005, vol. 252, p. 352.ADSCrossRefGoogle Scholar
  161. 161.
    Banks, D.P., Grivas, C., Mills, J.D., Eason, R.W., and Zergioti, L., Appl. Phys. Lett., 2006, vol. 89, 193107.Google Scholar
  162. 162.
    Klini, A., Loukakos, P.A., Gray, D., Manousaki, A., and Fotakis, C., Opt. Express, 2008, vol. 16, p. 11300.ADSCrossRefGoogle Scholar
  163. 163.
    Beyer, S., Tornari, V., and Gornicki, D., Proc SPIE, 2003, vol. 5063, p. 202.ADSCrossRefGoogle Scholar
  164. 164.
    Venkatakrishnan, K., Ngoi, B.K.A., Stanley, P., Lim, L.E.N., Tan, B., and Sivakumar, N.R., Appl. Phys. A, 2002, vol. 74, p. 493.ADSCrossRefGoogle Scholar
  165. 165.
    Wenjun, W., Xuesong, M., Gedong, J., Kedian, W., and Chengjuan, Y., Opt. Laser Technol., 2012, vol. 44, p. 153.ADSCrossRefGoogle Scholar
  166. 166.
    Ando, E. and Suzuki, S., J. Non-Cryst. Solids, 1997, vol. 218, p. 68.ADSCrossRefGoogle Scholar
  167. 167.
    Dini, J.W., Electrodeposition: The Materials Science of Coatings and Substrates, Park Ridge, NJ: Noyes, 1993.Google Scholar
  168. 168.
    Domke, M., Nobile, L., Rapp, S., Eiselen, S., Sotrop, J., Huber, H.P., and Schmidt, M., Phys. Procedia, 2014, vol. 56, p. 1007.ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • S. A. Romashevskiy
    • 1
    Email author
  • S. I. Ashitkov
    • 1
  • M. B. Agranat
    • 1
  1. 1.Joint Institute for High TemperaturesRussian Academy of SciencesMoscowRussia

Personalised recommendations